Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Boron nitride substrates for high-quality graphene electronics


Graphene devices on standard SiO2 substrates are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene1,2,3,4,5,6,7,8,9,10,11,12. Although suspending the graphene above the substrate leads to a substantial improvement in device quality13,14, this geometry imposes severe limitations on device architecture and functionality. There is a growing need, therefore, to identify dielectrics that allow a substrate-supported geometry while retaining the quality achieved with a suspended sample. Hexagonal boron nitride (h-BN) is an appealing substrate, because it has an atomically smooth surface that is relatively free of dangling bonds and charge traps. It also has a lattice constant similar to that of graphite, and has large optical phonon modes and a large electrical bandgap. Here we report the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal h-BN substrates, by using a mechanical transfer process. Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO2. These devices also show reduced roughness, intrinsic doping and chemical reactivity. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics15 and allows for the realization of more complex graphene heterostructures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mechanical transfer process.
Figure 2: Atomic force microscopy.
Figure 3: Transport properties.
Figure 4: Magnetotransport.


  1. 1

    Geim, A. & Novoselov, K. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Neto, A., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  3. 3

    Ando, T. Screening effect and impurity scattering in monolayer graphene. J. Phys. Soc. Jpn 75, 074716 (2006).

    Article  Google Scholar 

  4. 4

    Nomura, K. & MacDonald, A. H. Quantum transport of massless dirac fermions. Phys. Rev. Lett. 98, 076602 (2007).

    Article  Google Scholar 

  5. 5

    Hwang, E. H., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Hwang, E. H., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 18392–18397 (2007).

    Google Scholar 

  7. 7

    Fratini, S. & Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 77, 195415 (2008).

    Article  Google Scholar 

  8. 8

    Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Katsnelson, M. I. & Geim, A. K. Electron scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A 366, 195–204 (2007).

    Article  Google Scholar 

  11. 11

    Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L. & Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Hong, X. et al. High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. Phys. Rev. Lett 102, 136808 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Ponomarenko, L. A. et al. Effect of a high-kappa environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Lafkioti, M. et al. Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions. Nano Lett. 10, 1149–1153 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Liao, L., Bai, J., Qu, Y., Huang, Y. & Duan, X. Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors. Nanotechnology 21, 015705 (2010).

    Article  Google Scholar 

  19. 19

    Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Giovannetti, G., Khomyakov, P., Brocks, G., Kelly, P. & Brink, J. V. D. Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007).

    Article  Google Scholar 

  21. 21

    Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature 462, 339–341 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Young, A. F. et al. Electronic compressibility of gapped bilayer graphene. preprint at arXiv:1004.5556v2 (2010).

  23. 23

    Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–Bn solvent. J. Cryst. Growth 303, 525–529 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Hong, X., Zou, K. & Zhu, J. The quantum scattering time and its implications on scattering sources in graphene. Phys. Rev. B 80, 241415 (2009).

    Article  Google Scholar 

  29. 29

    Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Adam, S. & Sarma, S. D. Boltzmann transport and residual conductivity in bilayer graphene. Phys. Rev. B 77, 115436 (2007).

    Article  Google Scholar 

  32. 32

    McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Article  Google Scholar 

  33. 33

    Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  Google Scholar 

  34. 34

    Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Zhao, Y. et al. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010).

    CAS  Article  Google Scholar 

Download references


The authors thank D. Sukhdeo and N. Baklitskaya for help with device fabrication. This work is supported by the Defense Advanced Research Projects Agency (Carbon Electronics for RF Applications), Air Force Office of Scientific Research, Office of Naval Research, Semiconductor Research Corporation Focus Center Research Program, The National Science Foundation (CHE-0117752), New York State Foundation for Science, and Technology and Innovation (NYSTAR).

Author information




C.R.D. and A.F.Y. performed the experiments, including sample fabrication, measurement, characterization and development of the transfer technique. I.M. contributed to sample fabrication, measurement and development of the transfer technique. C.L. and W.L. contributed to sample fabrication. S.S. contributed to development of the transfer technique. K.W. and T.T. synthesized the h-BN samples. P.K., K.L.S., and J.H. provided advice on the experiments.

Corresponding authors

Correspondence to C. R. Dean or J. Hone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 673 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dean, C., Young, A., Meric, I. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech 5, 722–726 (2010).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research