Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Beam pen lithography

Abstract

Lithography techniques are currently being developed to fabricate nanoscale components for integrated circuits, medical diagnostics and optoelectronics1,2,3,4,5,6,7. In conventional far-field optical lithography, lateral feature resolution is diffraction-limited8. Approaches that overcome the diffraction limit have been developed9,10,11,12,13,14, but these are difficult to implement or they preclude arbitrary pattern formation. Techniques based on near-field scanning optical microscopy can overcome the diffraction limit, but they suffer from inherently low throughput and restricted scan areas15,16,17. Highly parallel two-dimensional, silicon-based, near-field scanning optical microscopy aperture arrays have been fabricated18, but aligning a non-deformable aperture array to a large-area substrate with near-field proximity remains challenging. However, recent advances in lithographies based on scanning probe microscopy have made use of transparent two-dimensional arrays of pyramid-shaped elastomeric tips (or ‘pens’) for large-area, high-throughput patterning of ink molecules19,20,21,22,23. Here, we report a massively parallel scanning probe microscopy-based approach that can generate arbitrary patterns by passing 400-nm light through nanoscopic apertures at each tip in the array. The technique, termed beam pen lithography, can toggle between near- and far-field distances, allowing both sub-diffraction limit (100 nm) and larger features to be generated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of a beam pen array.
Figure 2: Large-area patterning and sub-diffraction limit features.
Figure 3: Arbitrary pattern fabrication capability.
Figure 4: Orthogonal levels of patterning control provided by macroscale addressability of pens.

Similar content being viewed by others

References

  1. Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 (2000).

    Article  CAS  Google Scholar 

  2. Mirkin, C. A. The power of the pen: development of massively parallel dip-pen nanolithography. ACS Nano 1, 79–83 (2007).

    Article  CAS  Google Scholar 

  3. Gates, B. D. et al. New approaches to nanofabrication: moulding, printing and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    Article  CAS  Google Scholar 

  4. Qi, M. H. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).

    Article  CAS  Google Scholar 

  5. Geissler, M. & Xia, Y. N. Patterning: principles and some new developments. Adv. Mater. 16, 1249–1269 (2004).

    Article  CAS  Google Scholar 

  6. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

    Article  CAS  Google Scholar 

  7. Salaita, K., Wang, Y. H. & Mirkin, C. A. Applications of dip-pen nanolithography. Nature Nanotech. 2, 145–155 (2007).

    Article  CAS  Google Scholar 

  8. Abbé, E. Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch. Mikrosk. Anat. Entwichlungsmech. 9, 413–468 (1873).

    Article  Google Scholar 

  9. Scott, T. F., Kowalski, B. A., Sullivan, A. C., Bowman, C. N. & McLeod, R. R. Two-colour single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324, 913–917 (2009).

    Article  CAS  Google Scholar 

  10. Li, L. J., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-colour initiation and deactivation of polymerization. Science 324, 910–913 (2009).

    Article  CAS  Google Scholar 

  11. Andrew, T. L., Tsai, H. Y. & Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 324, 917–921 (2009).

    Article  CAS  Google Scholar 

  12. Smith, H. I. A proposal for maskless, zone-plate-array nanolithography. J. Vac. Sci. Technol. B 14, 4318–4322 (1996).

    Article  CAS  Google Scholar 

  13. Menon, R., Patel, A., Gil, D. & Smith, H. I. Maskless lithography. Mater. Today 8, 26–33 (2005).

    Article  CAS  Google Scholar 

  14. Levenson, M. D., Viswanathan, N. S. & Simpson, R. A. Improving resolution in photolithography with a phase-shifting mask. IEEE Trans. Electron. Dev. 29, 1828–1836 (1982).

    Article  Google Scholar 

  15. Naber, A., Kock, H. & Fuchs, H. High-resolution lithography with near-field optical microscopy. Scanning 18, 567–571 (1996).

    Article  Google Scholar 

  16. Kingsley, J. W., Ray, S. K., Adawi, A. M., Leggett, G. J. & Lidzey, D. G. Optical nanolithography using a scanning near-field probe with an integrated light source. Appl. Phys. Lett. 93, 213103 (2008).

    Article  Google Scholar 

  17. Leggett, G. J. Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev. 35, 1150–1161 (2006).

    Article  CAS  Google Scholar 

  18. Choi, S. S., Ok, J. T., Kim, D. W., Jung, M. Y. & Park, M. J. Modeling of a nanoscale oxide aperture opening for a NSOM probe. J. Kor. Phys. Soc. 45, 1659–1663 (2004).

    CAS  Google Scholar 

  19. Huo, F. W. et al. Polymer pen lithography. Science 321, 1658–1660. (2008).

    Article  CAS  Google Scholar 

  20. Zheng, Z. J. et al. Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angew. Chem. Int. Ed. 48, 7626–7629 (2009).

    Article  CAS  Google Scholar 

  21. Huang, L. et al. Matrix-assisted dip-pen nanolithography and polymer pen lithography. Small 6, 1077–1081 (2010).

    Article  CAS  Google Scholar 

  22. Liao, X., Braunschweig, A. B. & Mirkin, C. A. ‘Force-feedback’ leveling of massively parallel arrays in polymer pen lithography. Nano Lett. 10, 1335–1340 (2010).

    Article  CAS  Google Scholar 

  23. Liao, X., Braunschweig, A. B., Zheng, Z. J. & Mirkin, C. A. Force- and time-dependent feature size and shape control in molecular printing via polymer-pen lithography. Small 6, 1082–1086 (2010).

    Article  CAS  Google Scholar 

  24. Qin, D., Xia, Y. N., Black, A. J. & Whitesides, G. M. Photolithography with transparent reflective photomasks. J. Vac. Sci. Technol. B 16, 98–103 (1998).

    Article  CAS  Google Scholar 

  25. Qin, D., Xia, Y. N. & Whitesides, G. M. Elastomeric light valves. Adv. Mater. 9, 407–410 (1997).

    Article  CAS  Google Scholar 

  26. Vettiger, P. et al. The ‘millipede’—more than one thousand tips for future AFM data storage. IBM J. Res. Develop. 44, 323–340 (2000).

    Article  CAS  Google Scholar 

  27. Wang, X. F., Bullen, D. A., Zou, J., Liu, C. & Mirkin, C. A. Thermally actuated probe array for parallel dip-pen nanolithography. J. Vac. Sci. Technol. B 22, 2563–2567 (2004).

    Article  CAS  Google Scholar 

  28. Bullen, D. & Liu, C. Electrostatically actuated dip pen nanolithography probe arrays. Sens. Actuators A 125, 504–511 (2006).

    Article  CAS  Google Scholar 

  29. Bullen, D. et al. Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84, 789–791 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.A.M. acknowledges the U.S. Air Force Office of Scientific Research (AFOSR), the Defense Advanced Research Projects Agency (DARPA) and NSF (NSEC-program) for supporting this research. C.A.M is grateful for a NSSEF Fellowship from the DoD. L.R.G. acknowledges the NSF for a Graduate Research Fellowship and an ARCS Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

F.H. and G.Z. contributed equally to this work in designing and performing the experiments, analysing the results and drafting the manuscript. X.L., L.R.G., J.C., X.C. and W.S. also performed experiments and helped with revisions. C.A.M. helped design the experiments, analyse the results, and draft the manuscript.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, F., Zheng, G., Liao, X. et al. Beam pen lithography. Nature Nanotech 5, 637–640 (2010). https://doi.org/10.1038/nnano.2010.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing