Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Very large magnetoresistance in graphene nanoribbons

Abstract

Graphene has unique electronic properties1,2, and graphene nanoribbons are of particular interest because they exhibit a conduction bandgap that arises due to size confinement and edge effects3,4,5,6,7,8,9,10,11. Theoretical studies have suggested that graphene nanoribbons could have interesting magneto-electronic properties, with a very large predicted magnetoresistance4,12,13,14,15,16,17,18,19,20. Here, we report the experimental observation of a significant enhancement in the conductance of a graphene nanoribbon field-effect transistor by a perpendicular magnetic field. A negative magnetoresistance of nearly 100% was observed at low temperatures, with over 50% magnetoresistance remaining at room temperature. This magnetoresistance can be tuned by varying the gate or source–drain bias. We also find that the charge transport in the nanoribbons is not significantly modified by an in-plane magnetic field. The large observed values of magnetoresistance may be attributed to the reduction of quantum confinement through the formation of cyclotron orbits and the delocalization effect under the perpendicular magnetic field15,16,17,18,19,20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of fabrication of a graphene nanoribbon FET using a nanowire as a physical etching mask.
Figure 2: Electrical transport measurements of a graphene nanoribbon FET with a channel width of 15 nm and length of 800 nm.
Figure 3: Tunable magnetoresistance in a graphene nanoribbon FET device.
Figure 4: Temperature-dependent magneto-transport properties.
Figure 5: Magneto-transport properties of a short-channel graphene nanoribbon FET device with a width of 37 nm and length of 200 nm.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  3. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  CAS  Google Scholar 

  4. Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  5. Sols, F., Guinea, F. & Neto, A. H. C. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).

    Article  CAS  Google Scholar 

  6. Gunlycke, D., Areshkin, D. A. & White, C. T. Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104 (2007).

    Article  Google Scholar 

  7. Adam, S., Cho, S., Fuhrer, M. S. & Das Sarma, S. Density inhomogeneity driven percolation metal–insulator transition and dimensional crossover in graphene nanoribbons. Phys. Rev. Lett. 101, 046404 (2008).

    Article  CAS  Google Scholar 

  8. Stampfer, C. et al. Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009).

    Article  CAS  Google Scholar 

  9. Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy bandgap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  10. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  11. Bai, J. W., Duan, X. F. & Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano. Lett. 9, 2083–2087 (2009).

    Article  CAS  Google Scholar 

  12. Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  Google Scholar 

  13. Kim, W. Y. & Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nature Nanotech. 3, 408–412 (2008).

    Article  CAS  Google Scholar 

  14. Munoz-Rojas, F., Fernandez-Rossier, J. & Palacios, J. J. Giant magnetoresistance in ultrasmall graphene based devices. Phys. Rev. Lett. 102, 136810 (2009).

    Article  CAS  Google Scholar 

  15. Peres, N. M. R., Castro Neto, A. H. & Guinea, F. Dirac fermion confinement in graphene. Phys. Rev. B 73, 241403 (2006).

    Article  Google Scholar 

  16. Peres, N. M. R., Castro Neto, A. H. & Guinea, F. Conductance quantization in mesoscopic graphene. Phys. Rev. B 73, 195411 (2006).

    Article  Google Scholar 

  17. Huang, Y., Chang, C. P. & Lin, M. F. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons. Nanotechnology 18, 495401 (2007).

    Article  CAS  Google Scholar 

  18. Liu, J., Wright, A. R., Zhang, C. & Ma, Z. Strong terahertz conductance of graphene nanoribbons under a magnetic field. Appl. Phys. Lett. 93, 041106 (2008).

    Article  Google Scholar 

  19. Ritter, C., Makler, S. S. & Latge, A. Energy-gap modulations of graphene ribbons under external fields: a theoretical study. Phys. Rev. B 77, 195443 (2008).

    Article  Google Scholar 

  20. Li, T. S., Huang, Y. C., Chang, S. C., Chang, C. P. & Lin, M. F. Magnetoconductance of graphene nanoribbons. Phil. Mag. 89, 697–709 (2009).

    Article  CAS  Google Scholar 

  21. Lin, Y. M., Perebeinos, V., Chen, Z. H. & Avouris, P. Electrical observation of subband formation in graphene nanoribbons. Phys. Rev. B 78, 161409 (2008).

    Article  Google Scholar 

  22. Gallagher, P., Todd, K. & Foldhaber-Gordon, D. Disorder-induced gap behavior in graphene nanoribbons. Phys. Rev. B 81, 115409 (2010).

    Article  Google Scholar 

  23. Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

    Article  Google Scholar 

  24. Ozyilmaz, B., Jarillo-Herrero, P., Efetov, D. & Kim, P. Electronic transport in locally gated graphene nanoconstrictions. Appl. Phys. Lett. 91, 192107 (2007).

    Article  Google Scholar 

  25. Scott Bunch, J. S., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. L. Coulomb osillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005).

    Article  Google Scholar 

  26. Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    Article  CAS  Google Scholar 

  27. Cho, S. & Fuhrer, M. S. Charge transport and inhomogeneity near the minimum conductivity point in graphene. Phys. Rev. B 77, 081402 (2008).

    Article  Google Scholar 

  28. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  CAS  Google Scholar 

  29. Sahoo, S. et al. Electric field control of spin transport. Nature Phys. 1, 99–102 (2005).

    Article  CAS  Google Scholar 

  30. Hamaya, K. et al. Electric-field control of tunneling magnetoresistance effect in a Ni/InAs/Ni quantum-dot spin valve. Appl. Phys. Lett. 91, 022107 (2007).

    Article  Google Scholar 

  31. Martin, I. & Blanter, Y. M. Transport in disordered graphene nanoribbons. Phys. Rev. B 79, 235132 (2009).

    Article  Google Scholar 

  32. Gershenson, M. E., Khavin, Y. B., Mikhalchuk, A. G., Bozler, H. M. & Bogdanov, A. L. Crossover from weak to strong localization in quasi-one-dimensional conductors. Phys. Rev. Lett. 79, 725–728 (1997).

    Article  CAS  Google Scholar 

  33. Poumirol, J. M. et al. Edge magneto-fingerprints in disordered graphene nanoribbons. Preprint at arXiv: 1002.4571v1 (2010).

  34. Oostinga, J. B., Sacepe, B., Cracium, M. F. & Morpurgo, A. F. Magneto-transport through graphene nanoribbons. Preprint at arXiv: 1003.2994v1 (2010).

Download references

Acknowledgements

The authors would like to acknowledge technical support from the Center for Quantum Research and the Nanoelectronics Research Facility at UCLA. The authors thank D. Newhauser and Y. Tserkovnyak for discussions. Y.H. acknowledges support from the Henry Samueli School of Engineering and an Applied Science Fellowship. X.D. acknowledges support from NSF CAREER award 0956171 and the NIH Director's New Innovator Award Program, part of the NIH Roadmap for Medical Research, through grant no. 1DP2OD004342-01.

Author information

Authors and Affiliations

Authors

Contributions

X.D., Y.H., J.B., R.C. and L.L. conceived and designed the experiments. J.B., C.R., F.X. and A.S. performed the experiments. J.B. and C.R. collected and analysed the data. M.W., A.S. and K.W. contributed experimental tools. J.B., C.R., Y.H. and X.D. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yu Huang or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Cheng, R., Xiu, F. et al. Very large magnetoresistance in graphene nanoribbons. Nature Nanotech 5, 655–659 (2010). https://doi.org/10.1038/nnano.2010.154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing