Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduction of thermal conductivity in phononic nanomesh structures


Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces4. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Silicon nanomesh device.
Figure 2: Device geometries and thermal conductivity measurements.
Figure 3: Electrical conductivity measurements.


  1. 1

    Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 303, 777–778 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Mahajan, R., Chiu, C. P. & Chrysler, G. Cooling a microprocessor chip. Proc. IEEE 94, 1476–1486 (2006).

    Article  Google Scholar 

  4. 4

    Zhang, P. P. et al. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439, 703–706 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).

    CAS  Article  Google Scholar 

  6. 6

    Dames, C. & Chen, G. in Thermoelectrics Handbook: Macro to Nano (ed. Rowe, D. M.) (CRC Press, 2006).

    Google Scholar 

  7. 7

    Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Balandin, A. & Wang, K. L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Li, D. Y. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Li, D. Y., Wu, Y., Fan, R., Yang, P. D. & Majumdar, A. Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186–3188 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Yang, B. & Chen, G. Partially coherent phonon heat conduction in superlattices. Phys. Rev. B 67, 195311 (2003)

    Article  Google Scholar 

  17. 17

    Wang, D. W., Sheriff, B. A. & Heath, J. R. Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett. 6, 1096–1100 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Liu, W. J. & Asheghi, M. Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J. Appl. Phys. 98, 123523 (2005).

    Article  Google Scholar 

  20. 20

    Bera, C., Mingo, N. & Volz, S. Marked effects of alloying on the thermal conductivity of nanoporous materials. Phys. Rev. Lett. 104, 115502 (2010).

    Article  Google Scholar 

  21. 21

    Simkin, M. V. & Mahan, G. D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Hyldgaard, P. & Mahan, G. D. Phonon superlattice transport. Phys. Rev. B 56, 10754–10757 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Ren, S. Y. & Dow, J. D. Thermal-conductivity of super-lattices. Phys. Rev. B 25, 3750–3755 (1982).

    CAS  Article  Google Scholar 

  24. 24

    Tamura, S., Tanaka, Y. & Maris, H. J. Phonon group velocity and thermal conduction in superlattices. Phys. Rev. B 60, 2627–2630 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Gillet, J. N., Chalopin, Y. & Volz, S. Atomic-scale three-dimensional phononic crystals with a very low thermal conductivity to design crystalline thermoelectric devices. J. Heat Transfer 131, 043206 (2009).

    Article  Google Scholar 

  26. 26

    Lee, J.-H., Galli, G. A. & Grossman, J. C. Nanoporous Si as an efficient thermoelectric material. Nano Lett. 8, 3750–3754 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Lee, J. H., Grossman, J. C., Reed, J. & Galli, G. Lattice thermal conductivity of nanoporous Si: molecular dynamics study. Appl. Phys. Lett. 91, 223110 (2007).

    Article  Google Scholar 

  28. 28

    Donadio, D. & Galli, G. Temperature dependence of the thermal conductivity of thin silicon nanowires. Nano Lett. 10, 847–851 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Chapman, P. W., Tufte, O. N., Zook, J. D. & Long, D. Electrical properties of heavily doped silicon. J. Appl. Phys. 34, 3291–3295 (1963).

    CAS  Article  Google Scholar 

  30. 30

    Heath, J. R. Superlattice nanowire pattern transfer (SNAP). Acc. Chem. Res. 41, 1609–1617 (2008).

    CAS  Article  Google Scholar 

Download references


This work was funded by the Department of Energy (Basic Energy Sciences). The authors acknowledge the Intel Foundation for a graduate fellowship (J.-K.Y.), KAUST for a Scholar Award (D.T.), and the National Science Foundation for a graduate fellowship (J.V.). The authors also thank J. Tahir-Kheli for helpful discussions and A. Boukai for early assistance with device fabrication. J.-K.Y. thanks H. Do (UCLA Nanoelectronics Research Facility) for helpful suggestions regarding device fabrication.

Author information




J.-K.Y., S.M. and J.R.H. conceived the work and wrote the manuscript. J.-K.Y. and S.M. developed the fabrication protocols and carried out fabrication of the devices, transport measurements and data analysis. S.M., J.-K.Y. and J.R.H. interpreted the experimental findings. D.T. and J.-K.Y. devised the experimental set-up, and D.T. wrote the data acquisition, analysis and error propagation routines. J.V. helped with device fabrication. J.V., D.T. and J.-K.Y. wrote the Supplementary Information.

Corresponding authors

Correspondence to Douglas Tham or Joseph Varghese or James R. Heath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 841 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, JK., Mitrovic, S., Tham, D. et al. Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotech 5, 718–721 (2010).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research