Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection


Nanoparticles have emerged as key materials for biomedical applications because of their unique and tunable physical properties, multivalent targeting capability, and high cargo capacity1,2. Motivated by these properties and by current clinical needs, numerous diagnostic3,4,5,6,7,8,9,10 and therapeutic11,12,13 nanomaterials have recently emerged. Here we describe a novel nanoparticle targeting platform that uses a rapid, catalyst-free cycloaddition as the coupling mechanism. Antibodies against biomarkers of interest were modified with trans-cyclooctene and used as scaffolds to couple tetrazine-modified nanoparticles onto live cells. We show that the technique is fast, chemoselective, adaptable to metal nanomaterials, and scalable for biomedical use. This method also supports amplification of biomarker signals, making it superior to alternative targeting techniques including avidin/biotin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of BOND.
Figure 2: Effect of TCO loading on nanoparticle binding using BOND-2.
Figure 3: Comparison of different nanoparticle targeting strategies.
Figure 4: Profiling cancer cells using diagnostic magnetic resonance.

Similar content being viewed by others


  1. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  Google Scholar 

  2. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  Google Scholar 

  3. Giljohann, D. A. & Mirkin, C. A. Drivers of biodiagnostic development. Nature 462, 461–464 (2009).

    Article  CAS  Google Scholar 

  4. Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nature Nanotech. 5, 42–47 (2010).

    Article  CAS  Google Scholar 

  5. Jin, Y. & Gao, X. Plasmonic fluorescent quantum dots. Nature Nanotech. 4, 571–576 (2009).

    Article  CAS  Google Scholar 

  6. Chen, Z. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nature Biotechnol. 26, 1285–1292 (2008).

    Article  CAS  Google Scholar 

  7. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnol. 26, 83–90 (2008).

    Article  CAS  Google Scholar 

  8. Lee, J. H. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Med. 13, 95–99 (2007).

    Article  CAS  Google Scholar 

  9. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  10. Nam, J. M., Thaxton, C. S. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    Article  CAS  Google Scholar 

  11. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  12. Cho, K., Wang, X., Nie, S., Chen, Z. G. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008).

    Article  CAS  Google Scholar 

  13. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnol. 26, 561–569 (2008).

    Article  CAS  Google Scholar 

  14. Shaw, S. Y. et al. Perturbational profiling of nanomaterial biologic activity. Proc. Natl Acad. Sci. USA 105, 7387–7392 (2008).

    Article  CAS  Google Scholar 

  15. Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nature Protoc. 2, 1152–1165 (2007).

    Article  CAS  Google Scholar 

  16. Devaraj, N. K., Upadhyay, R., Haun, J. B., Hilderbrand, S. A. & Weissleder, R. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew. Chem. Int. Ed. 48, 7013–7016 (2009).

    Article  CAS  Google Scholar 

  17. Devaraj, N. K., Weissleder, R. & Hilderbrand, S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug. Chem. 19, 2297–2299 (2008).

    Article  CAS  Google Scholar 

  18. Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels–Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).

    Article  CAS  Google Scholar 

  19. Lee, H., Sun, E., Ham, D. & Weissleder, R. Chip-NMR biosensor for detection and molecular analysis of cells. Nature Med. 14, 869–874 (2008).

    Article  Google Scholar 

  20. Lee, H., Yoon, T. J., Figueiredo, J. L., Swirski, F. K. & Weissleder, R. Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl Acad. Sci. USA 106, 12459–12464 (2009).

    Article  CAS  Google Scholar 

  21. Hudis, C. A. Trastuzumab—mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39–51 (2007).

    Article  CAS  Google Scholar 

  22. Hong, K. W. et al. A novel anti-EGFR monoclonal antibody inhibiting tumor cell growth by recognizing different epitopes from cetuximab. J. Biotechnol. 145, 84–91 (2010).

    Article  CAS  Google Scholar 

  23. Troise, F., Cafaro, V., Giancola, C., D'Alessio, G. & De Lorenzo, C. Differential binding of human immunoagents and Herceptin to the ErbB2 receptor. FEBS J. 275, 4967–4979 (2008).

    Article  CAS  Google Scholar 

  24. Green, N. M. Avidin and streptavidin. Methods Enzymol. 184, 51–67 (1990).

    Article  CAS  Google Scholar 

  25. Chinol, M. et al. Biochemical modifications of avidin improve pharmacokinetics and biodistribution, and reduce immunogenicity. Br. J. Cancer 78, 189–197 (1998).

    Article  CAS  Google Scholar 

  26. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  Google Scholar 

  27. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  Google Scholar 

  28. Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Rev. Cancer 8, 329–340 (2008).

    Article  CAS  Google Scholar 

  29. Reynolds, F., O'Loughlin, T., Weissleder, R. & Josephson, L. Method of determining nanoparticle core weight. Anal. Chem. 77, 814–817 (2005).

    Article  CAS  Google Scholar 

  30. Piran, U. & Riordan, W. J. Dissociation rate constant of the biotin–streptavidin complex. J. Immunol. Methods 133, 141–143 (1990).

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge N. Sergeyev for synthesizing CLIO and C. Wang for assistance with MALDI-TOF measurements. We especially thank G. Thurber, M. Pittet, F. Swirski and M. Nahrendorf for their many helpful suggestions. We also thank Y. Fisher-Jeffes for reviewing the manuscript. This work was funded in part by NCI grant P50CA86355 and RO1 EB004626.

Author information

Authors and Affiliations



J.B.H. designed and performed the experiments, analysed the data and wrote the manuscript. N.K.D. and S.A.H. developed and synthesized the bioorthogonal chemistries. H.L. performed the magnetic resonance measurements. R.W. provided overall guidance, designed experiments, reviewed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ralph Weissleder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haun, J., Devaraj, N., Hilderbrand, S. et al. Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nature Nanotech 5, 660–665 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing