Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer

Abstract

Understanding how nanoparticles with different shapes interact with cell membranes is important in drug and gene delivery1,2,3,4, but this interaction remains poorly studied3. Using computer simulations, we investigate the physical translocation processes of nanoparticles with different shapes (for example, spheres, ellipsoids, rods, discs and pushpin-like particles) and volumes across a lipid bilayer. We find that the shape anisotropy and initial orientation of the particle are crucial to the nature of the interaction between the particle and lipid bilayer. The penetrating capability of a nanoparticle across a lipid bilayer is determined by the contact area between the particle and lipid bilayer, and the local curvature of the particle at the contact point. Particle volume affects translocation indirectly, and particle rotation can complicate the penetration process. Our results provide a practical guide to geometry considerations when designing nanoscale cargo carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Penetration of ellipsoid nanoparticles having different shapes across a lipid bilayer.
Figure 2: Effect of initial orientation and rotation of the particle on penetration.
Figure 3: Effects of contact area on particle penetration.
Figure 4: Effects of particle disruption on translocation.
Figure 5: Penetrating behaviour of pushpin-shaped particles.

Similar content being viewed by others

References

  1. Service, R. F. Nanotechnology takes aim at cancer. Science 310, 1132–1134 (2005).

    Article  Google Scholar 

  2. Xia, Y. Nanomaterials at work in biomedical research. Nature Mater. 7, 758–760 (2008).

    Article  CAS  Google Scholar 

  3. Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nature Mater. 8, 15–23 (2008).

    Article  Google Scholar 

  4. Nel, A. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  5. Decuzzi, P. & Ferrari, M. The receptor-mediated endocytosis of nonspherical particles. Biophys. J. 94, 3790–3797 (2008).

    Article  CAS  Google Scholar 

  6. Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006).

    Article  CAS  Google Scholar 

  7. Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech. 3, 423–428 (2008).

    Article  CAS  Google Scholar 

  8. Livadaru, L. & Kovalenko, A. Fundamental mechanism of translocation across liquidlike membranes: toward control over nanoparticle behavior. Nano Lett. 6, 78–83 (2006).

    Article  CAS  Google Scholar 

  9. Roiter, Y. et al. Interaction of nanoparticles with lipid membrane. Nano Lett. 8, 941–944 (2008).

    Article  CAS  Google Scholar 

  10. Obataya, I., Nakamura, C., Han, S., Nakamura, N. & Miyake, J. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett. 5, 27–30 (2005).

    Article  CAS  Google Scholar 

  11. Wong-Ekkabut, J. et al. Computer simulation study of fullerene translocation through lipid membranes. Nature Nanotech. 3, 363–368 (2008).

    Article  CAS  Google Scholar 

  12. Qiao, R., Roberts, A. P., Mount, A. S., Klaine, S. J. & Ke, P. C. Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 7, 614–619 (2007).

    Article  CAS  Google Scholar 

  13. Wallace, E. J. & Sansom, M. S. P. Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett. 8, 2751–2756 (2008).

    Article  CAS  Google Scholar 

  14. Chen, X., Kis, A., Zettl, A. & Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes. Proc. Natl Acad. Sci. USA 104, 8218–8222 (2007).

    Article  CAS  Google Scholar 

  15. Vakarelski, I. U., Brown, S. C., Higashitani, K. & Moudgil, B. M. Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 23, 10893–10896 (2007).

    Article  CAS  Google Scholar 

  16. Leroueil, P. R. et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 8, 420–424 (2008).

    Article  CAS  Google Scholar 

  17. Hong, S. P. et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjugate Chem. 17, 728–734 (2006).

    Article  CAS  Google Scholar 

  18. Leroueil, P. R. et al. Nanoparticle interaction with biological membranes: does nanotechnology present a janus face? Acc. Chem. Res. 40, 335–342 (2007).

    Article  CAS  Google Scholar 

  19. Ginzburg, V. V. & Balijepailli, S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett. 7, 3716–3722 (2007).

    Article  CAS  Google Scholar 

  20. Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc. Natl Acad. Sci. USA 84, 5449–5453 (1987).

    Article  CAS  Google Scholar 

  21. Cossart, P. Perspectives series: host/pathogen interactions. J. Clin. Invest. 99, 2307–2311 (1997).

    Article  CAS  Google Scholar 

  22. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    Article  CAS  Google Scholar 

  23. Gratton, S. E. A. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    Article  CAS  Google Scholar 

  24. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2008).

    Article  Google Scholar 

  25. Shillcock, J. C. & Lipowsky, R. Tension-induced fusion of bilayer membranes and vesicles. Nature Mater. 4, 225–228 (2005).

    Article  CAS  Google Scholar 

  26. Laradji, M. & Kumar, P. B. S. Dynamics of domain growth in self-assembled fluid vesicles. Phys. Rev. Lett. 93, 198105 (2004).

    Article  Google Scholar 

  27. Schmidt, U., Guigas, G. & Weiss, M. Cluster formation of transmembrane proteins due to hydrophobic mismatching. Phys. Rev. Lett. 101, 128104 (2008).

    Article  Google Scholar 

  28. Alexeev, A., Uspal, W. E. & Balazs, A. C. Harnessing janus nanoparticles to create controllable pores in membranes. ACS Nano 2, 1117–1122 (2008).

    Article  CAS  Google Scholar 

  29. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech. 3, 145–150 (2008).

    Article  CAS  Google Scholar 

  30. Song, L. Z. et al. Structure of staphylococcal-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1865 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Austin, M. Laradji, I. Szleifer, Z. Zhang, W. Tian, C. Ren and X. Shi for helpful discussions. This work was supported by the National Basic Research Program of China under grant no. 2007CB925101 and the National Natural Science Foundation of China under grant no. 10974080.

Author information

Authors and Affiliations

Authors

Contributions

K.Y. and Y.Q.M. conceived and designed the simulations. K.Y. and Y.Q.M. performed the simulations. K.Y. and Y.Q.M. analysed the data. K.Y. and Y.Q.M. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yu-Qiang Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1602 kb)

Supplementary information

Supplementary movie 1 (MOV 442 kb)

Supplementary information

Supplementary movie 2 (MOV 468 kb)

Supplementary information

Supplementary movie 3 (MOV 1110 kb)

Supplementary information

Supplementary movie 4 (MOV 1523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Ma, YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotech 5, 579–583 (2010). https://doi.org/10.1038/nnano.2010.141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing