High-power lithium batteries from functionalized carbon-nanotube electrodes

Abstract

Energy storage devices that can deliver high powers have many applications, including hybrid vehicles and renewable energy. Much research has focused on increasing the power output of lithium batteries by reducing lithium-ion diffusion distances, but outputs remain far below those of electrochemical capacitors and below the levels required for many applications. Here, we report an alternative approach based on the redox reactions of functional groups on the surfaces of carbon nanotubes. Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes. The electrode, which is several micrometres thick, can store lithium up to a reversible gravimetric capacity of 200 mA h g−1electrode while also delivering 100 kW kgelectrode−1 of power and providing lifetimes in excess of thousands of cycles, both of which are comparable to electrochemical capacitor electrodes. A device using the nanotube electrode as the positive electrode and lithium titanium oxide as a negative electrode had a gravimetric energy 5 times higher than conventional electrochemical capacitors and power delivery 10 times higher than conventional lithium-ion batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Physical characteristics of LBL-MWNT electrodes.
Figure 2: Potential-dependent electrochemical behaviour of LBL-MWNT and functionalized MWNT composite electrodes measured in two-electrode lithium cells.
Figure 3: Electrochemical characteristics of LBL-MWNT electrodes in two-electrode lithium cells with 1 M LiPF6 in a mixture of ethylene carbonate and dimethyl carbonate (volume ratio 3:7).
Figure 4: Gravimetric energy and power densities, and cycle life of LBL-MWNT electrodes obtained from measurements of two-electrode cells.
Figure 5: Schematic of the energy storage mechanism of LBL-MWNT electrodes.

References

  1. 1

    Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Miller, J. R. & Simon, P. Materials science—electrochemical capacitors for energy management. Science 321, 651–652 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Amatucci, G. G., Badway, F., Du Pasquier, A. & Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930–A939 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  Google Scholar 

  6. 6

    Nazar, L. F. et al. Nanostructured materials for energy storage. Int. J. Inorg. Mater. 3, 191–200 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Arico, A. S. et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Poizot, P. et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Sides, C. R. et al. Nanoscale materials for lithium-ion batteries. MRS Bull. 27, 604–607 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Wu, X. L. et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21, 2710–2714 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Hu, C. C., Chen, W. C. & Chang, K. H. How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J. Electrochem. Soc. 151, A281–A290 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Fischer, A. E. et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Reddy, A. L. M., Shaijumon, M. M., Gowda, S. R. & Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9, 1002–1006 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Kim, D. K. et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Bélanger, D., Brousse, T. & Long, J. W. Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem. Soc. Interf. 17, 49–52 (2008).

    Google Scholar 

  20. 20

    Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Xiang, H. F. et al. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J. Power Sources 183, 355–360 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Dudney, J. N. Thin film micro-batteries. Electrochem. Soc. Interf. 17, 44–48 (2008).

    CAS  Google Scholar 

  23. 23

    Lee, Seung Woo et al. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Niu, C. M. et al. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Futaba, D. N. et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater. 5, 987–994 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Zielke, U., Huttinger, K. J. & Hoffman, W. P. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon 34, 983–998 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Kozlowski, C. & Sherwood, P. M. A. X-ray photoelectron-spectroscopic studies of carbon-fibre surfaces. Part 5. The effect of pH on surface oxidation. J. Chem. Soc. Farad. Trans. I 81, 2745–2756 (1985).

    CAS  Article  Google Scholar 

  28. 28

    Frackowiak, E. et al. Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37, 61–69 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Zhu, X. Y., Lee, S. M., Lee, Y. H. & Frauenheim, T. Adsorption and desorption of an O2 molecule on carbon nanotubes. Phys. Rev. Lett. 85, 2757–2760 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Burg, P. et al. The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods. Carbon 40, 1521–1531 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Lota, G. et al. Effect of nitrogen in carbon electrodes on the supercapacitor performance. Chem. Phys. Lett. 404, 53–58 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Simon, P. & Burke, A. Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interf. 17, 38–43 (2008).

    CAS  Google Scholar 

  33. 33

    Chmiola, J., Yushin, G., Dash, R. & Gogotsi, Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance. J. Power Sources 158, 765–772 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Le Gall, T., Reiman, K. H., Grossel, M. C. & Owen, J. R. Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries. J. Power Sources 119, 316–320 (2003).

    Article  Google Scholar 

  35. 35

    Chen, H. et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348–355 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Ramanathan, T., Fisher, F. T., Ruoff, R. S. & Brinson, L. C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 17, 1290–1295 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Ago, H. et al. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103, 8116–8121 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Naoi, K. & Simon, P. New materials and new configurations for advanced electrochemical capacitors. Electrochem. Soc. Interf. 17, 34–37 (2008).

    CAS  Google Scholar 

  39. 39

    Ma, S. B. et al. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J. Power Sources 178, 483–489 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Fischer, A. E. et al. Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: correlation of evolving pore–solid structure and electrochemical performance. J. Electrochem. Soc. 155, A246–A252 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Kang, K. S. et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Chen, H. Y. et al. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 131, 8984–8988 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Frackowiak, E. & Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937–950 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Krogman, K. C., Zacharia, N. S., Schroeder, S. & Hammond, P. T. Automated process for improved uniformity and versatility of layer-by-layer deposition. Langmuir 23, 3137–3141 (2007).

    CAS  Article  Google Scholar 

  46. 46

    Han, X. Y. et al. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 19, 1616–1621 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Xiang, J. F. et al. A novel coordination polymer as positive electrode material for lithium ion battery. Cryst. Growth Des. 8, 280–282 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support from the Dupont–MIT Alliance for this project. Y.S.H. acknowledges support from the Office of Naval Research (N000140410400) and the MRSEC Program of the National Science Foundation (award no. DMR – 0819762). The assistance of E.L. Shaw in collecting XPS data, Y.T. Kim in carrying out surface functionalization of MWNTs, and Y.C. Lu in electrochemical measurements and XPS analysis is greatly appreciated. T. Kawaguchi is thanked for assistance with Li4Ti5O12 and LiNi0.5Mn1.5O4 synthesis and measurements. S.W.L. acknowledges a Samsung Scholarship from the Samsung Foundation of Culture, and B.M.G. acknowledges a graduate research fellowship from the National Science Foundation.

Author information

Affiliations

Authors

Contributions

Y.S.H., S.W.L., N.Y. and B.M.G. conceived and designed the experiments. S.W.L., B.S.K. and P.T.H. were involved with the methods of film assembly. S.C. carried out microscopy analysis. Y.S.H., S.W.L., N.Y. and B.M.G. co-wrote the manuscript, and P.T.H. edited the manuscript.

Corresponding authors

Correspondence to Byeong-Su Kim or Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2432 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, S., Yabuuchi, N., Gallant, B. et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotech 5, 531–537 (2010). https://doi.org/10.1038/nnano.2010.116

Download citation

Further reading