Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires


Precise delivery of molecular doses of biologically active chemicals to a pre-specified single cell among many, or a specific subcellular location, is still a largely unmet challenge hampering our understanding of cell biology. Overcoming this could allow unprecedented levels of cell manipulation and targeted intervention. Here, we show that gold nanowires conjugated with a cytokine such as tumour-necrosis factor-alpha can be transported along any prescribed trajectory or orientation using electrophoretic and dielectrophoretic forces to a specific location with subcellular resolution. The nanowire, 6 µm long and 300 nm in diameter, delivered the cytokine and activated canonical nuclear factor-kappaB signalling in a single cell. Combined computational modelling and experimentation indicated that cell stimulation was highly localized to the nanowire vicinity. This targeted delivery method has profound implications for controlling signalling events on the single cell level.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Nanowire functionalization and movement.
Figure 2: Nanowire delivery to pre-selected cells.
Figure 3: Delivery of functional TNFα by nanowires.
Figure 4: Simulations predict localized TNFα delivery.
Figure 5: Selective stimulation by TNFα-coated nanowires.


  1. 1

    Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell. Biol. 7, 678–689 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Delves, P. J. & Roitt, I. M. The immune system. First of two parts. N. Engl. J. Med. 343, 37–49 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29–55 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Lee, H. M., Larson, D. R. & Lawrence, D. S. Illuminating the chemistry of life: design, synthesis and applications of ‘caged' and related photoresponsive compounds. ACS Chem. Biol. 4, 409–427 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Mayer, G. & Heckel, A. Biologically active molecules with a ‘light switch’. Angew. Chem. Int. Ed. Engl. 45, 4900–4921 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Takayama, S. et al. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl Acad. Sci. USA 96, 5545–5548 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Takayama, S. et al. Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem. Biol. 10, 123–130 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Takayama, S. et al. Subcellular positioning of small molecules. Nature 411, 1016 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Fan, D. L., Cammarata, R. C. & Chien, C. L. Precision transport and assembling of nanowires in suspension by electric fields. Appl. Phys. Lett. 92, 093115 (2008).

    Article  Google Scholar 

  11. 11

    Fan, D. L., Zhu, F. Q., Cammarata, R. C. & Chien, C. L. Controllable high-speed rotation of nanowires. Phys. Rev. Lett. 94, 247208 (2005).

    Article  Google Scholar 

  12. 12

    Fan, D. L., Zhu, F. Q., Cammarata, R. C. & Chien, C. L. Efficiency of assembling of nanowires in suspension by ac electric fields. Appl. Phys. Lett. 89, 223115 (2006).

    Article  Google Scholar 

  13. 13

    Fan, D. L., Zhu, F. Q., Cammarata, R. C. & Chien, C. L. Manipulation of nanowires in suspension by AC electric fields. Appl. Phys. Lett. 85, 4175–4177 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Cheong, R. et al. Transient IκB kinase activity mediates temporal NF-κB dynamics in response to a wide range of tumor necrosis factor-α doses. J. Biol. Chem. 281, 2945–2950 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Whitney, T. M., Searson, P. C., Jiang, J. S. & Chien, C. L. Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316–1319 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Huber, D. L., Manginell, R. P., Samara, M. A., Kim, B. I. & Bunker, B. C. Programmed adsorption and release of proteins in a microfluidic device. Science 301, 352–354 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Aggarwal, B. B. et al. Human tumor necrosis factor. Production, purification and characterization. J. Biol. Chem. 260, 2345–2354 (1985).

    CAS  Google Scholar 

  18. 18

    White, B., Banerjee, S., O'Brien, S., Turro, N. J. & Herman, I. P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. C 111, 13684–13690 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Yin, Z., Noren, D., Wang, C. J., Hang, R. & Levchenko, A. Analysis of pairwise cell interactions using an integrated dielectrophoretic–microfluidic system. Mol. Syst. Biol. 4, 232 (2008).

    Article  Google Scholar 

  20. 20

    Wajant, H., Pfizenmaier, K. & Scheurich, P. Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Cheong, R., Hoffmann, A. & Levchenko, A. Understanding NF-κB signaling via mathematical modeling. Mol. Syst. Biol. 4, 192 (2008).

    Article  Google Scholar 

  23. 23

    Schwarz, J. A. & Contescu, C. I. Surfaces of Nanoparticles and Porous Materials xvi, p. 787 (Marcel Dekker, 1999).

  24. 24

    Mato, J. M., Losada, A., Nanjundiah, V. & Konijn, T. M. Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc. Natl Acad. Sci. USA 72, 4991–4993 (1975).

    CAS  Article  Google Scholar 

  25. 25

    Kim, D. H. et al. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30, 5433–5444 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Van Haastert, P. J. & Devreotes, P. N. Chemotaxis: signalling the way forward. Nature Rev. Mol. Cell. Biol. 5, 626–634 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Black, R. A. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385, 729–733 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Cai, D. et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nature Methods 2, 449–454 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Kim, W., Ng, J. K., Kunitake, M. E., Conklin, B. R. & Yang, P. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228–7229 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Zoski, C. G. Handbook of Electochemistry (Elsevier, 2007).

    Google Scholar 

  31. 31

    Kearns, J. D., Basak, S., Werner, S. L., Huang, C. S. & Hoffmann, A. IκBɛ provides negative feedback to control NF-κB oscillations, signaling dynamics and inflammatory gene expression. J. Cell. Biol. 173, 659–664 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Werner, S. L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    CAS  Article  Google Scholar 

Download references


The authors thank W. Greene of UCSF for providing the p65 plasmid, J. Wang for helping with cell transfection, X. Li for TNFα labelling and Z. Wang for microplate scanning. D.F., F.Q.Z., C.L.C. acknowledge support from the National Science Foundation (DMR 0403849). R.C.C. acknowledges support from the National Science Foundation (DMR 0706178). Z.Y., R.C. and A.L. acknowledge the support from the National Institutes of Health (GM072024, RR020839). D.F. acknowledges start up support from University of Texas at Austin. R.C. acknowledges support from the Medical Scientist Training Program at Johns Hopkins University.

Author information




D.F., Z.Y., C.L.C. and A.L. conceived and designed the experiments and analysis. Z.Y., D.F. and F.Q.Z. performed the experiments and analysed the data. R.C. performed the simulations. All authors discussed the results and co-wrote the paper.

Corresponding authors

Correspondence to C. L. Chien or Andre Levchenko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 631 kb)

Supplementary information

Supplementary movie 1 (AVI 1452 kb)

Supplementary information

Supplementary movie 2 (AVI 781 kb)

Supplementary information

Supplementary movie 3 (AVI 643 kb)

Supplementary information

Supplementary movie 4 (AVI 2468 kb)

Supplementary information

Supplementary movie 5 (AVI 4327 kb)

Supplementary information

Supplementary movie 6 (AVI 1444 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fan, D., Yin, Z., Cheong, R. et al. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nature Nanotech 5, 545–551 (2010).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research