Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Above-bandgap voltages from ferroelectric photovoltaic devices

Abstract

In conventional solid-state photovoltaics, electron–hole pairs are created by light absorption in a semiconductor and separated by the electric field spaning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, which operates over a distance of 1–2 nm and produces voltages that are significantly higher than the bandgap. The separation happens at previously unobserved nanoscale steps of the electrostatic potential that naturally occur at ferroelectric domain walls in the complex oxide BiFeO3. Electric-field control over domain structure allows the photovoltaic effect to be reversed in polarity or turned off. This new degree of control, and the high voltages produced, may find application in optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model domain-wall architectures.
Figure 2: Light and dark IV measurements.
Figure 3: Role of domain-walls in the photovoltaic response.
Figure 4: Band structure in dark conditions and under illumination.
Figure 5: Domain-wall switching effect.

Similar content being viewed by others

References

  1. Ginley, D., Green, M. A. & Collins, R. Solar energy conversion toward 1 terawatt. Mater. Res. Soc. Bull. 33, 355–364 (2008).

    Article  CAS  Google Scholar 

  2. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    Article  CAS  Google Scholar 

  3. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  4. Goldstein, B. & Pensak, L. High-voltage photovoltaic effect. J. Appl. Phys. 30, 155–161 (1959).

    Article  CAS  Google Scholar 

  5. Brody, P. S. & Crowne, F. Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics. J. Electron. Mater. 4, 955–971 (1975).

    Article  CAS  Google Scholar 

  6. Glass, A. M., von der Linde, D. & Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 . Appl. Phys. Lett. 25, 233–235 (1974).

    Article  CAS  Google Scholar 

  7. Fridkin, V. M. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 46, 654–658 (2001).

    Article  Google Scholar 

  8. Ichiki, M., Furue, H., Kobayashi, T. & Maeda R. Photovoltaic properties of (Pb,La)(Zr,Ti)O3 films with different crystallographic orientations. Appl. Phys. Lett. 87, 222903 (2005).

    Article  Google Scholar 

  9. Ichiki, M. et al. Photovoltaic effect of lead lanthanum zirconate titanate in a layered film structure design. Appl. Phys. Lett. 84, 395–397 (2004).

    Article  CAS  Google Scholar 

  10. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1975).

    Article  Google Scholar 

  11. Streiffer, S. K. et al. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83, 2742–2753 (1998).

    Article  CAS  Google Scholar 

  12. Iwata, M. et al. Domain wall structure in Pb(Zn1/2Nb2/3)O3-PbTiO3-mixed crystals by atomic force microscopy. Jpn J. Appl. Phys. 43, 6812–6815 (2004).

    Article  CAS  Google Scholar 

  13. Chu, Y.-H. et al. Domain control in multiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662–2666 (2007).

    Article  CAS  Google Scholar 

  14. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002)

    Article  Google Scholar 

  15. Basu, S. R. et al. Photoconductivity in BiFeO3 thin films. Appl. Phys. Lett. 92, 091905 (2008).

    Article  Google Scholar 

  16. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.-W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 . Science 324, 63–66 (2009).

    Article  CAS  Google Scholar 

  17. Chu, Y.-H. et al. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 9, 1726–1730 (2009).

    Article  CAS  Google Scholar 

  18. Lubk, A., Gemming, S. & Spaldin, N. A. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009).

    Article  Google Scholar 

  19. Romanov, A. E., Lefevre, M. J., Speck, J. S., Pompe, W. & Streiffer, S. K. Domain pattern formation in epitaxial rhombohedral ferroelectric films. II. Interfacial defects and energetic. J. Appl. Phys. 83, 2754–2765 (1998).

    Article  CAS  Google Scholar 

  20. Chen, Y. B. et al. Ferroelectric domain structures of epitaxial (001) BiFeO3 thin films. Appl. Phys. Lett. 90, 072907 (2007).

    Article  Google Scholar 

  21. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  22. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, 1977).

    Google Scholar 

  23. Toledano, J.-C. Ferro-elasticity. Ann. Telecommun. 29, 249–270 (1974).

    Google Scholar 

  24. Chen, F. S., LaMacchia, J. T. & Fraser, D. B. Holographic storage in lithium niobate. Appl. Phys. Lett. 13, 223–225 (1968).

    Article  CAS  Google Scholar 

  25. Odulov, S. G. Spatially oscillating photovoltaic current in iron-doped lithium niobate crystals. JETP Lett. 35, 10–12 (1982).

    CAS  Google Scholar 

  26. Anikiev, A. A., Reznik, L. G., Umarov, B. S. & Scott, J. F. Perturbed polariton spectra in optically damaged LiNbO3 . Ferroelec. Lett. 3, 89–96 (1985).

    Article  CAS  Google Scholar 

  27. Chaib, H., Otto, T. & Eng, L. M. Electrical and optical properties of LiNbO3 single crystals at room temperature. Phys. Rev. B 67, 174109 (2003).

    Article  Google Scholar 

  28. Scott, J. F. Interpretation of photovoltaic pulses in normal YBa2Cu3O7 . Appl. Phys. Lett. 56, 1914–1915 (1990).

    Article  CAS  Google Scholar 

  29. Reznik, L. G., Anikiev, A. A., Umarov, B. S. & Scott, J. F. Studies of optical damage in lithium niobate in the presence of thermal gradients. Ferroelectrics 64, 215–219 (1985).

    Article  CAS  Google Scholar 

  30. Kostritskii, S. M., Sevostyanov, O. G., Aillerie, M. & Bourson, P. Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals. J. Appl. Phys. 104, 114104 (2008).

    Article  Google Scholar 

  31. Kostritskii, S. M., Bourson, P., Mouras, R. & Fontana, M. D. Optical fatigue of undoped lithium niobate crystals caused by irreversible photorefractive damage at high-intensity illumination. Opt. Mater. 29, 732–737 (2007).

    Article  CAS  Google Scholar 

  32. Yang, S. Y. et al. Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett. 87, 102903 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The work at Berkeley was performed within the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract no. DE-AC02-05CH11231. J.S. acknowledges support from the Alexander von Humboldt Foundation. Y.H.C. would like to acknowledge the support of the National Science Council, R.O.C., under contract no. NSC 98-2119-M-009-016.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.Y. and J.S. conceived and designed the experiments. S.Y.Y., J.S. and S.J.B. performed the experiments. P.S., C.H.Y., M.D.R., P.Y., Y.-H.C. and J.W.A. contributed material and analysis. S.Y.Y., J.S., S.J.B., J.F.S., L.W.M. and R.R. co-wrote the paper.

Corresponding author

Correspondence to S. Y. Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6884 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Seidel, J., Byrnes, S. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nature Nanotech 5, 143–147 (2010). https://doi.org/10.1038/nnano.2009.451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing