Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A highly sensitive and selective diagnostic assay based on virus nanoparticles

Abstract

Early detection of the protein marker troponin I in patients with a higher risk of acute myocardial infarction1,2,3,4,5 can reduce the risk of death from heart attacks6,7,8,9,10. Most troponin assays are currently based on the conventional enzyme linked immunosorbent assay and have detection limits in the nano- and picomolar range11. Here, we show that by combining viral nanoparticles, which are engineered to have dual affinity for troponin antibodies and nickel, with three-dimensional nanostructures including nickel nanohairs, we can detect troponin levels in human serum samples that are six to seven orders of magnitude lower than those detectable using conventional enzyme linked immunosorbent assays11,12,13,14,15,16. The viral nanoparticle helps to orient the antibodies for maximum capture of the troponin markers. High densities of antibodies on the surfaces of the nanoparticles and nanohairs lead to greater binding of the troponin markers, which significantly enhances detection sensitivities. The nickel nanohairs are re-useable and can reproducibly differentiate healthy serum from unhealthy ones. We expect other viral nanoparticles to form similar highly sensitive diagnostic assays for a variety of other protein markers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional diagnostic assay based on virus nanoparticles.
Figure 2: Detection of troponin I.
Figure 3: A washable and reuseable assay system.
Figure 4: Troponin I assay on PVDF membranes.
Figure 5: Clinical specificity and sensitivity of the viral chimeric nanoparticle-based assay.

Similar content being viewed by others

References

  1. Adams, J. E. et al. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation 88, 101–106 (1993).

    Article  Google Scholar 

  2. Adams, J. E., Schechtman, K. B., Landt, Y., Ladenson, J. H. & Jaffe, A. S. Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin. Chem. 40, 1291–1295 (1994).

    CAS  Google Scholar 

  3. Thygesen, K., Alpert, J. S. & White, H. D. Universal definition of myocardial infarction. J. Am. Coll. Cardiol. 50, 2173–2195 (2007).

    Article  Google Scholar 

  4. Morrow, D. A. et al. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin. Chem. 53, 552–574 (2007).

    Article  CAS  Google Scholar 

  5. Gibler, W. B. et al. Practical implementation of the guidelines for unstable angina/non-ST-segment elevation myocardial infarction in the emergency department. Ann. Emerg. Med. 46, 185–197 (2005).

    Article  Google Scholar 

  6. Antman, E. M. et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N. Engl. J. Med. 335, 1342–1349 (1996).

    Article  CAS  Google Scholar 

  7. Wu, A. H. B. & Jaffe, A. S. The clinical need for high-sensitivity cardiac troponin assays for acute coronary syndromes and the role for serial testing. Am. Heart J. 155, 208–214 (2008).

    Article  CAS  Google Scholar 

  8. Benamer, H. et al. Elevated cardiac troponin I predicts a high-risk angiographic anatomy of the culprit lesion in unstable angina. Am. Heart J. 137, 815–820 (1999).

    Article  CAS  Google Scholar 

  9. Heeschen, C., van den Brand, M. J., Hamm, C. W. & Simoons, M. L. Angiographic findings in patients with refractory unstable angina according to troponin T status. Circulation 100, 1509–1514 (1999).

    Article  CAS  Google Scholar 

  10. Wong, G. C. et al. Elevations in troponin T and I are associated with abnormal tissue level perfusion: A TACTICS-TIMI 18 substudy. Circulation 106, 202–207 (2002).

    Article  CAS  Google Scholar 

  11. Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005).

    Article  CAS  Google Scholar 

  12. Hirsch, L. R., Jackson, J. B., Lee, A., Halas, N. J. & West, J. A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377–2381 (2003).

    Article  CAS  Google Scholar 

  13. Nam, J. M., Park, S. J. & Mirkin, C. A. Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc. 124, 3820–3821 (2002).

    Article  CAS  Google Scholar 

  14. Niemeyer, C. M. & Ceyhan, B. DNA-directed functionalization of colloidal gold with proteins. Angew. Chem. Int. Ed. 40, 3685–3688 (2001).

    Article  CAS  Google Scholar 

  15. Chien, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. 100, 4984–4989 (2003).

    Article  Google Scholar 

  16. Wang, J., Polsky, R., Merkoci, A. & Turner, K. L. DNA-based amplified bioelectronic detection and coding of proteins. Angew. Chem. Int. Ed. 43, 2158–2161 (2004).

    Article  CAS  Google Scholar 

  17. Rowe, C. A. et al. Array biosensor for simultaneous identification of bacterial, viral and protein analytes. Anal. Chem. 71, 3846–3852 (1999).

    Article  CAS  Google Scholar 

  18. Gouda, H. et al. NMR study of the interaction between the B domain of staphylococcal protein A and the Fc portion of immunoglobulin G. Biochemistry 37, 129–136 (1998).

    Article  CAS  Google Scholar 

  19. Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å. resolution. Biochemistry 20, 2361–2370 (1981).

    Article  CAS  Google Scholar 

  20. Böttcher, B., Wynne, S. A. & Crowther, R. A. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91 (1997).

    Article  Google Scholar 

  21. Crowther, R. A. et al. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77, 943–950 (1994).

    Article  CAS  Google Scholar 

  22. Fischlechner, M. & Donath, E. Viruses as building blocks for materials and devices. Angew Chem. Int. Ed. 46, 3184–3193 (2007).

    Article  CAS  Google Scholar 

  23. Toellner, L., Fischlechner, M., Ferko, B., Grabherr, R. M. & Donath, E. Virus-coated layer-by-layer colloids as a multiplex suspension array for the detection and quantification of virus-specific antibodies. Clin. Chem. 52, 1575–1583 (2006).

    Article  CAS  Google Scholar 

  24. Yang, L. M. C. et al. Virus electrodes for universal biodetection. Anal. Chem. 78, 3265–3270 (2006).

    Article  CAS  Google Scholar 

  25. Willis, S. et al. Virus-like particles as quantitative probes of membrane protein interactions. Biochemistry 47, 6988–6990 (2008).

    Article  CAS  Google Scholar 

  26. Datta, M. et al. High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. J. Am. Chem. Soc. 130, 2546–2552 (2008).

    Article  CAS  Google Scholar 

  27. Fischlechner, M. et al. Fusion of enveloped virus nanoparticles with polyelectrolyte-supported lipid membranes for the design of bio/nonbio interfaces. Nano Lett. 7, 3540–3546 (2007).

    Article  CAS  Google Scholar 

  28. Apple, F. S., Smith, S. W., Pearce, L. A., Ler, R. & Murakami, M. M. Use of the centaur TnI-ultra assay for detection of myocardial infarction and adverse events in patients presenting with symptoms suggestive of acute coronary syndrome. Clin. Chem. 54, 723–728 (2008).

    Article  CAS  Google Scholar 

  29. Ahn, J. Y. et al. Heterologous gene expression using self-assembled supra-molecules with high affinity for HSP70 chaperone. Nucl. Acids Res. 33, 3751–3762 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Laboratory Project (a main project that supported this work) of the Ministry of Education, Science and Technology (grant no. ROA-2007-000-20084-0), the Korea Health 21 R&D Project of the Ministry of Health, Welfare and Family Affairs of the Republic of Korea (grant no. A050750), the Pioneer Research Center Program (grant no. M10711160001-08M1116-00110), the Microbial Genomics and Applications Center at KRIBB, the Seoul R&BD program (no. 10920), and the Korea Research Foundation (grant no. KRF-2006-005-J03603).

Author information

Authors and Affiliations

Authors

Contributions

J.L. conceived the viral particle-based assay experiments, conducted the data analysis and wrote the paper. Y.K.K. conceived the nanohair concept, conducted the data analysis and co-wrote the paper. J.S.P. and E.J.L. performed the viral particle synthesis and assay experiments and collected the data. M.K.C. performed the nanohair synthesis and SEM analysis. J.S.P., E.J.L. and M.K.C. contributed equally to this work. K.Y.A. analysed assay data. K.E.L. and S.-S.H. contributed TEM analysis tools. J.H.J. and Y.C. contributed human sera for diagnostic assay.

Corresponding authors

Correspondence to Young Keun Kim or Jeewon Lee.

Supplementary information

Supplementary Information

Supplementary Information (PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JS., Cho, M., Lee, E. et al. A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nature Nanotech 4, 259–264 (2009). https://doi.org/10.1038/nnano.2009.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing