Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanotubular metal–insulator–metal capacitor arrays for energy storage

This article has been updated

Abstract

Nanostructured devices have the potential to serve as the basis for next-generation energy systems that make use of densely packed interfaces and thin films1. One approach to making such devices is to build multilayer structures of large area inside the open volume of a nanostructured template. Here, we report the use of atomic layer deposition to fabricate arrays of metal–insulator–metal nanocapacitors in anodic aluminium oxide nanopores. These highly regular arrays have a capacitance per unit planar area of 10 µF cm−2 for 1-µm-thick anodic aluminium oxide and 100 µF cm−2 for 10-µm-thick anodic aluminium oxide, significantly exceeding previously reported values for metal–insulator–metal capacitors in porous templates2,3,4,5,6. It should be possible to scale devices fabricated with this approach to make viable energy storage systems that provide both high energy density and high power density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM cross-sections of MIM capacitors.
Figure 2: TEM of MIM capacitors.
Figure 3: Relationship between MIM nanotubular structure and the parameters used to calculate total capacitance.
Figure 4: Process sequence to prepare MIM capacitors.

Similar content being viewed by others

Change history

  • 31 March 2009

    In the version of this Letter initially published online, the x axes in Fig. 2b were incorrect. This error has been corrected for all versions.

References

  1. Arico, A. S. et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  2. Kemell, M. et al. Si/Al2O3/ZnO: Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition. Microelectron. Eng. 84, 313–318 (2007).

    Article  CAS  Google Scholar 

  3. Roozeboom, F. et al. High-value MOS capacitor arrays in ultradeep trenches in silicon. Microelectron. Eng. 53, 581–584 (2000).

    Article  CAS  Google Scholar 

  4. Shelimov, K. B., Davydov, D. N. & Moskovits, M. Template-grown high-density nanocapacitor arrays. Appl. Phys. Lett. 77, 1722–1724 (2000).

    Article  CAS  Google Scholar 

  5. Sohn, J. I. et al. Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes. Appl. Phys. Lett. 87, 123115 (2005).

    Article  Google Scholar 

  6. Klootwijk, J. H. et al. Ultrahigh capacitance density for multiple ALD-grown MIM capacitor stacks in 3-D silicon. IEEE Electron. Dev. Lett. 29, 740–742 (2008).

    Article  CAS  Google Scholar 

  7. Burke, A. Ultracapacitors: Why, how and where is the technology. J. Power Sources 91, 37–50 (2000).

    Article  CAS  Google Scholar 

  8. Elam, J. W., Routkevitch, D., Mardilovich, P. P. & George, S. M. Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem. Mater. 15, 3507–3517 (2003).

    Article  CAS  Google Scholar 

  9. Seidel, T., Kim, G. Y., Srivastava, A. & Karim, Z. Crucial applications addressed via fundamental ALD advances. Solid State Technol. 48, 45–48 (2005).

    CAS  Google Scholar 

  10. King, J. S., Heineman, D., Graugnard, E. & Summers, C. J. Atomic layer deposition in porous structures: 3D photonic crystals. Appl. Surf. Sci. 244, 511–516 (2005).

    Article  CAS  Google Scholar 

  11. Elam, J. W. et al. Atomic layer deposition of W on nanoporous carbon aerogels. Appl. Phys. Lett. 89, 053124 (2006).

    Article  Google Scholar 

  12. Biener, J. et al. Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology 18, 055303 (2007).

    Article  Google Scholar 

  13. Kucheyev, S. O. et al. Mechanisms of atomic layer deposition on substrates with ultrahigh aspect ratios. Langmuir 24, 943–948 (2008).

    Article  CAS  Google Scholar 

  14. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    Article  CAS  Google Scholar 

  15. Perez, I. et al. TEM-based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures. Small 4, 1223–1232 (2008).

    Article  CAS  Google Scholar 

  16. Niu, C. M. et al. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997).

    Article  CAS  Google Scholar 

  17. Groner, M. D., Elam, J. W., Fabreguette, F. H. & George, S. M. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 413, 186–197 (2002).

    Article  CAS  Google Scholar 

  18. Banerjee, P. & Ditali, A. Uniqueness in activation energy and charge-to-breakdown of highly asymmetrical DRAM Al2O3 cell capacitors. Electron. Dev. Lett. 25, 574–576 (2004).

    Article  CAS  Google Scholar 

  19. Xing, Q. F., Sasaki, G. & Fukunaga, H. Interfacial microstructure of anodic-bonded Al/glass. J. Mater. Sci.: Mater. Electron. 13, 83–88 (2002).

    CAS  Google Scholar 

  20. Masuda, H. & Satoh, M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J. Appl. Phys. 35, L126–L129 (1996).

    Article  CAS  Google Scholar 

  21. Kim, H. K. et al. Metallorganic atomic layer deposition of TiN thin films using TDMAT and NH3 . J. Korean Phys. Soc. 41, 739–744 (2002).

    CAS  Google Scholar 

  22. Henn-Lecordier, L., Lei, W., Anderle, M. & Rubloff, G. W. Real-time sensing and metrology for atomic layer deposition processes and manufacturing. J. Vac. Sci. Technol. B 25, 130–139 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Laboratory for Physical Sciences and by the UMD-NSF-MRSEC under grant no. DMR 05-20471. The authors would like to thank E. Smela for providing facilities for anodic bonding of aluminium on glass, W.-A. Chiou for helpful discussions, the NanoCenter and the NISP Lab at the University of Maryland for materials processing and characterization, and MKS Instruments and Inficon Inc. for continued support of research activities in the laboratory.

Author information

Authors and Affiliations

Authors

Contributions

I.P. carried out anodic bonding and anodic aluminium oxidation of the substrates. L.H.-L. performed the dielectric deposition of ALD Al2O3. ALD TiN deposition, process integration, materials and electrical characterization were carried out by P.B. Data analysis was done by P.B., S.B.L. and G.W.R. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Sang Bok Lee or Gary W. Rubloff.

Supplementary information

Supplementary Information

Supplementary Information (PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, P., Perez, I., Henn-Lecordier, L. et al. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nature Nanotech 4, 292–296 (2009). https://doi.org/10.1038/nnano.2009.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing