Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrically controlled DNA adhesion

Abstract

The ability to control the interaction of polyelectrolytes, such as DNA or proteins, with charged surfaces is of pivotal importance for a multitude of biotechnological applications. Previously, we measured the desorption forces of single polymers on charged surfaces using an atomic force microscope. Here, we show that the adhesion of DNA on gold electrodes modified with self-assembled monolayers can be biased by the composition of the monolayer and externally controlled by means of the electrode potential. Positive potentials induced DNA adsorption onto OH-terminated electrodes with adhesion forces up to 25 pN (at +0.5 V versus Ag/AgCl), whereas negative potentials suppressed DNA adsorption. The measured contributions of the DNA backbone phosphate charges and the doubly charged terminal phosphate on adsorption agreed with a model based on the Gouy–Chapman theory. Experiments on an NH2-terminated electrode revealed a similar force modulation range of the coulomb component of the desorption force. These findings are important for the development of new DNA-based biochips or supramolecular structures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Idealized representation of the single molecule desorption experiments on an OH–SAM electrode.
Figure 2: Polarized SAM electrodes and dsDNA rupture forces.
Figure 3: Rupture force versus potential.
Figure 4: Low-pass-filtered force–extension curves of dsDNA on the OH–SAM at +0.5 V.

References

  1. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  2. Jungmann, R., Liedl, T., Sobey, T. L., Shih, W. & Simmel, F. C. Isothermal assembly of DNA origami structures using denaturing agents. J. Am. Chem. Soc. 130, 10062 (2008).

    Article  CAS  Google Scholar 

  3. Kuhner, F., Erdmann, M. & Gaub, H. E. Scaling exponent and Kuhn length of pinned polymers by single molecule force spectroscopy. Phys. Rev. Lett. 97, 218301 (2006).

    Article  Google Scholar 

  4. Kuhner, F. et al. Friction of single polymers at surfaces. Langmuir 22, 11180–11186 (2006).

    Article  Google Scholar 

  5. Chatellier, X., Senden, T. J., Joanny, J. F. & di Meglio, J. M. Detachment of a single polyelectrolyte chain adsorbed on a charged surface. Europhys. Lett. 41, 303–308 (1998).

    Article  CAS  Google Scholar 

  6. Hugel, T. et al. Elasticity of single polyelectrolyte chains and their desorption from solid supports studied by AFM based single molecule force spectroscopy. Macromolecules 34, 1039–1047 (2001).

    Article  CAS  Google Scholar 

  7. Seitz, M., Friedsam, C., Jostl, W., Hugel, T. & Gaub, H. E. Probing solid surfaces with single polymers. ChemPhysChem. 4, 986–990 (2003).

    Article  Google Scholar 

  8. Rant, U. et al. Dynamic electrical switching of DNA layers on a metal surface. Nano Lett. 4, 2441–2445 (2004).

    Article  CAS  Google Scholar 

  9. Rant, U. et al. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets. Proc. Natl Acad. Sci. USA 104, 17364–17369 (2007).

    Article  CAS  Google Scholar 

  10. Lahann, J. et al. A reversibly switching surface. Science 299, 371–374 (2003).

    Article  CAS  Google Scholar 

  11. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  12. Chiu, T. K. & Dickerson, R. E. 1 angstrom crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J. Mol. Biol. 301, 915–945 (2000).

    Article  CAS  Google Scholar 

  13. Bai, Y. et al. Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J. Am. Chem. Soc. 129, 14981–14988 (2007).

    Article  CAS  Google Scholar 

  14. Schildkraut, C. & Lifson, S. Dependence of melting temperature of DNA on salt concentration. Biopolymers 3, 195–208 (1965).

    Article  CAS  Google Scholar 

  15. SantaLucia, J. A unified view of polymer, dumbbell and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA 95, 1460–1465 (1998).

    Article  CAS  Google Scholar 

  16. Lee, L., Johnston, A. P. R. & Caruso, F. Manipulating the salt and thermal stability of DNA multilayer films via oligonucleotide length. Biomacromolecules 9, 3070–3078 (2008).

    Article  CAS  Google Scholar 

  17. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley & Sons, 2000).

    Google Scholar 

  18. Christie, J. H. & Lingane, P. J. Theory of staircase voltammetry. J. Electroanal. Chem. 10, 176–182 (1965).

    CAS  Google Scholar 

  19. Ferrier, D. R. & Schroeder, R. R. Staircase voltammetry with varied current sampling times—theory for diffusion controlled, rate controlled, and mixed rate and diffusion controlled electrode reactions. J. Electroanal. Chem. 45, 343–359 (1973).

    Article  CAS  Google Scholar 

  20. Zipper, J. J. & Perone, S. P. Theoretical and experimental evaluation of staircase voltammetry. Anal. Chem. 45, 452–458 (1973).

    Article  CAS  Google Scholar 

  21. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  CAS  Google Scholar 

  22. Netz, R. R. & Joanny, J. F. Complexation behavior of polyampholytes and charged objects. Macromolecules 31, 5123–5141 (1998).

    Article  CAS  Google Scholar 

  23. Lehninger, A., Cox, M. & Nelson, D. L. Lehninger Principles of Biochemistry (W. H. Freeman & Co., 2008).

    Google Scholar 

  24. Kosenkov, D., Gorb, L., Shishkin, O. V., Sponer, J. & Leszczynski, J. Tautomeric equilibrium, stability and hydrogen bonding in 2'-deoxyguanosine monophosphate complexed with Mg2+. J. Phys. Chem. B 112, 150–157 (2008).

    Article  CAS  Google Scholar 

  25. Sonnenberg, L., Parvole, J., Kuhner, F., Billon, L. & Gaub, H. E. Choose sides: differential polymer adhesion. Langmuir 23, 6660–6666 (2007).

    Article  CAS  Google Scholar 

  26. Friedsam, C., Seitz, M. & Gaub, H. E. Investigation of polyelectrolyte desorption by single molecule force spectroscopy. J. Phys. Condens. Matter 16, S2369–S2382 (2004).

    Article  Google Scholar 

  27. Netz, R. R. & Joanny, J. F. Adsorption of semiflexible polyelectrolytes on charged planar surfaces: charge compensation, charge reversal and multilayer formation. Macromolecules 32, 9013–9025 (1999).

    Article  CAS  Google Scholar 

  28. Rentsch, S., Siegenthaler, H. & Papastavrou, G. Diffuse layer properties of thiol-modified gold electrodes probed by direct force measurements. Langmuir 23, 9083–9091 (2007).

    Article  CAS  Google Scholar 

  29. Manning, G. S. Molecular theory of polyelectrolyte solutions with applications to electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978).

    Article  CAS  Google Scholar 

  30. Maier, B., Seifert, U. & Radler, J. O. Elastic response of DNA to external electric fields in two dimensions. Europhys. Lett. 60, 622–628 (2002).

    Article  CAS  Google Scholar 

  31. Widrig, C. A., Chung, C. & Porter, M. D. The electrochemical desorption of N-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J. Electroanal. Chem. 310, 335–359 (1991).

    Article  CAS  Google Scholar 

  32. Ross, S. & Morrison, I. D. Colloidal Systems and Interfaces (Wiley & Sons, 1988).

    Google Scholar 

  33. Chen, Z. & Singh, R. K. General solution for Poisson–Boltzmann equation in semiinfinite planar symmetry. J. Colloid Interface Sci. 245, 301–306 (2002).

    Article  CAS  Google Scholar 

  34. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  35. Smith, S. B., Cui, Y. J. & Bustamante, C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  CAS  Google Scholar 

  36. Rief, M., Clausen-Schaumann, H. & Gaub, H. E. Sequence-dependent mechanics of single DNA molecules. Nature Struct. Biol. 6, 346–349 (1999).

    Article  CAS  Google Scholar 

  37. Horinek, D. et al. Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface and intrapeptide forces. Proc. Natl Acad. Sci. USA 105, 2842–2847 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Netz, D. Ho, T. Hugel, W. Schuhmann and G. Papastavrou for helpful discussions. This work was supported by the German Science Foundation (SFB 486) and the Nanosystems Initiative Munich (NIM). A.F. thanks the Alexander von Humboldt Foundation for their generous support.

Author information

Authors and Affiliations

Authors

Contributions

M.E., A.F. and H.E.G. conceived and designed the experiments and co-wrote the paper. M.E. performed the experiments and analysed the data. R.D. contributed the dsDNA and provided the tip and electrode functionalization. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hermann E. Gaub.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 797 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erdmann, M., David, R., Fornof, A. et al. Electrically controlled DNA adhesion. Nature Nanotech 5, 154–159 (2010). https://doi.org/10.1038/nnano.2009.377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.377

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research