Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly conductive self-assembled nanoribbons of coordination polymers


Organic molecules can self-assemble into well-ordered structures, but the conductance of these structures is limited1,2,3, which is a disadvantage for applications in molecular electronics. Conductivity can be improved by using coordination polymers—in which metal centres are incorporated into a molecular backbone—and such structures have been used as molecular wires by self-assembling them into ordered films on metal surfaces4. Here, we report electrically conductive nanoribbons of the coordination polymer [Pt2I(S2CCH3)4]n self-assembled on an insulating substrate by direct sublimation of polymer crystals. Conductance atomic force microscopy is used to probe the electrical characteristics of a few polymer chains (10) within the nanoribbons. The observed currents exceed those previously sustained in organic and metal–organic molecules assembled on surfaces by several orders of magnitude and over much longer distances. These results, and the results of theoretical calculations based on density functional theory, confirm coordination polymers as candidate materials for applications in molecular electronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembled nanoribbons of MMX polymers.
Figure 2: Electrical characterization of MMX nanoribbons using conductance AFM.
Figure 3: Resistance versus length measurements of MMX nanoribbons.
Figure 4: Calculated atomic configuration and electronic structure of an infinite MMX chain on a Au(111) surface.
Figure 5: Dynamic simulation of an MMX chain.


  1. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    Article  CAS  Google Scholar 

  2. Choi, S. H., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    Article  CAS  Google Scholar 

  3. Song, F. et al. Direct measurement of electrical conductance through a self-assembled molecular layer. Nature Nanotech. 4, 373–376 (2009).

    Article  CAS  Google Scholar 

  4. Tuccitto, N. et al. Highly conductive 40-nm-long molecular wires assembled by stepwise incorporation of metal centres. Nature Mater. 8, 41–46 (2009).

    Article  CAS  Google Scholar 

  5. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    Article  CAS  Google Scholar 

  6. Dai, H. Carbon nanotubes: synthesis, integration and properties. Acc. Chem. Res. 35, 1035–1044 (2002).

    Article  CAS  Google Scholar 

  7. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  8. Porath, D., Cuniberti, G. & Di Felice, R. Charge transport in DNA-based devices. Top. Curr. Chem. 237, 183–227 (2004).

    Article  CAS  Google Scholar 

  9. Berlin, Y. A. et al. DNA electron transfer processes: some theoretical notions. Top. Curr. Chem. 237, 1–36 (2004).

    Article  CAS  Google Scholar 

  10. Kitagawa, S. & Noro, S. in Comprehensive Coordination Chemistry II Vol. 7 (Elsevier, 2004).

    Google Scholar 

  11. Kitagawa, H. et al. Charge ordering with lattice distortions in a conductive MMX-chain complex, Pt2(dta)4I (dta = CH3CS2). J. Am. Chem. Soc. 121, 10068–10080 (1999).

    Article  CAS  Google Scholar 

  12. Bera, J. K. & Dunbar, K. R. Chain compounds based on transition metal backbones: new life for an old topic. Angew. Chem. Int. Ed. 41, 4453–4458 (2002).

    Article  CAS  Google Scholar 

  13. Dustin, K. J. & James, M. T. Molecules as wires: molecule-assisted movement of charge and energy. Top. Curr. Chem. 257, 33–62 (2005).

    Article  Google Scholar 

  14. Welte, L. et al. Time-dependence structures of coordination network wires in solution. ACS Nano 2, 2051–2056 (2008).

    Article  CAS  Google Scholar 

  15. Bellitto, C., Flamini, A., Gastaldi, L. & Scaramuzza, L. Halogen oxidation of tetrakis(dithioacetato)diplatinum(II) complexes, Pt2(CH3CS2)4—synthesis and characterization of Pt2(CH3CS2)4X2 (X = Cl, Br, I) and structural, electrical, and optical-properties of linear-chain (μ-iodo)tetrakis(dithioacetato)diplatinum, Pt2(CH3CS2)4I. Inorg. Chem. 22, 444–449 (1983).

    Article  CAS  Google Scholar 

  16. Calzolari, A., Alexandre, S. S., Zamora, F. & Di Felice, R. Metallicity in individual MMX chains. J. Am. Chem. Soc. 130, 5552–5562 (2008).

    Article  CAS  Google Scholar 

  17. Olea, D. et al. MMX polymer chains on surfaces. Chem. Commun. 1591–1593 (2007).

  18. Welte, L. et al. Organization of coordination polymers on surfaces by direct sublimation. Adv. Mater. 21, 2025–2028 (2009).

    Article  CAS  Google Scholar 

  19. Gomez-Navarro, C. et al. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior. Proc. Natl Acad. Sci. USA 99, 8484–8487 (2002).

    Article  CAS  Google Scholar 

  20. de Pablo, P. J. et al. Nonlinear resistance versus length in single-walled carbon nanotubes. Phys. Rev. Lett. 88, 36804–36808 (2002).

    Article  CAS  Google Scholar 

  21. Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, 1985).

    Book  Google Scholar 

  22. Kaiser, A. B. Systematic conductivity behavior in conducting polymers: effects of heterogeneous disorder. Adv. Mater. 13, 927–941 (2001).

    Article  CAS  Google Scholar 

  23. Gomez-Navarro, C. et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nature Mater. 4, 534–539 (2005).

    Article  CAS  Google Scholar 

  24. Dreizler, R. & Gross, E. K. U. Density Functional Theory (Plenum Press, 1995).

    Google Scholar 

  25. Car, R. & Parrinello, M. Unified approach for molecular-dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  Google Scholar 

  26. Datta, S. Quantum Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  27. Springborg, M. & Dong, Y. Metallic Chains/Chains of Atoms (Elsevier, 2007).

    Google Scholar 

  28. Horcas, I. et al. WSxM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge financial support from the Spanish Ministerio de Educación y Ciencia (Projects MAT2007-66476-C01/02), CAM (S-0505/MAT/0303), the European Union (FP6-029192 DNA-NANODEVICES and ERA under Chemistry Program CTQ2006-027185-E) and the regional Emilia Romagna net-lab PROMINER. The authors are indebted to A. Guijarro and M. Moreno-Moreno for their help in the experiments. Discussions with J.M. Soler and D. Porath are also acknowledged.

Author information

Authors and Affiliations



L.W. conducted the experiments. A.C. planned and performed the DFT calculations. R.D.F. designed the theoretical work and prepared the manuscript. F.Z. and J.G.-H. designed the experiments, analysed the data and prepared the manuscript.

Corresponding authors

Correspondence to Felix Zamora or Julio Gómez-Herrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 582 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Welte, L., Calzolari, A., Di Felice, R. et al. Highly conductive self-assembled nanoribbons of coordination polymers. Nature Nanotech 5, 110–115 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research