Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dispersed nanoelectrode devices

Abstract

The enhanced performance and reduced scale that nanoparticles can bring to a device are frequently compromised by the poor electrical conductivity of nanoparticle structures or assemblies. Here, we demonstrate a unique nanoscale electrode assembly in which conduction is carried out by one set of nanoparticles, and other device functions by another set. Using a scalable process, nanoparticles with tailored conductivity are stochastically deposited above or below a functional nanoparticle film, and serve as extensions of the bulk electrodes, greatly reducing the total film resistance. We apply this approach to solid-state gas sensors and achieve controlled device resistance with an exceptionally high sensitivity to ethanol of 20 ppb. This approach can be extended to other classes of devices such as actuators, batteries, and fuel and solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of possible layouts for functional nanostructured films integrated in microcircuitry (such as solid-state gas sensors).
Figure 2: Performance of solid-state gas sensors with standard electrodes.
Figure 3: Control of the resistance of the device by deposition of top-layout nanoelectrodes.
Figure 4: Deposition of bottom-layout nanoelectrodes.
Figure 5: Performance of bottom-layout nanoelectrodes.
Figure 6: Detection of ultralow EtOH concentrations by solid-state gas sensors with bottom-layout nanoelectrodes.

Similar content being viewed by others

References

  1. Wu, N. L., Wang, S. Y. & Rusakova, I. A. Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides. Science 285, 1375–1377 (1999).

    Article  CAS  Google Scholar 

  2. O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  3. Wang, P. et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Mater. 2, 402–407 (2003).

    Article  CAS  Google Scholar 

  4. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  5. Muecke, U. P. et al. Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater. 18, 3158–3168 (2008).

    Article  CAS  Google Scholar 

  6. Kim, H. et al. Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nature Nanotech. 1, 117–121 (2006).

    Article  CAS  Google Scholar 

  7. Tricoli, A. et al. Micropatterning layers by flame aerosol deposition-annealing. Adv. Mater. 20, 3005–3010 (2008).

    Article  CAS  Google Scholar 

  8. Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  9. Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001).

    Article  CAS  Google Scholar 

  10. Patey, T. J. et al. Flame co-synthesis of LiMn2O4 and carbon nanocomposites for high power batteries. J. Power Sour. 189, 149–154 (2009).

    Article  CAS  Google Scholar 

  11. Tricoli, A., Graf, M. & Pratsinis, S. E. Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv. Funct. Mater. 18, 1969–1976 (2008).

    Article  CAS  Google Scholar 

  12. Hagleitner, C. et al. Smart single-chip gas sensor microsystem. Nature 414, 293–296 (2001).

    Article  CAS  Google Scholar 

  13. Kühne, S. et al. Wafer-level flame-spray-pyrolysis deposition of gas-sensitive layers on microsensors. J. Micromech. Microeng. 18, 035040 (2008).

    Article  Google Scholar 

  14. Mueller, R., Mädler, L. & Pratsinis, S. E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 58, 1969–1976 (2003).

    Article  CAS  Google Scholar 

  15. Tamaki, J., Maekawa, T., Miura, N. & Yamazoe, N. CuO–SnO2 element for highly sensitive and selective detection of H2S. Sens. Actuat. B 9, 197–203 (1992).

    Article  CAS  Google Scholar 

  16. Chou, T. P., Zhang, Q., Russo, B. & Cao, G. Enhanced light-conversion efficiency of titanium-dioxide dye-sensitized solar cells with the addition of indium-tin-oxide and fluorine-tin-oxide nanoparticles in electrode films. J. Nanophoton. 2, 023511 (2008).

    Article  Google Scholar 

  17. Mädler, L. et al. Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuat. B 114, 283–295 (2006).

    Article  Google Scholar 

  18. Becker, T., Ahlers, S., Bosch-v.Braunmuhl, C., Muller, G. & Kiesewetter, O. Gas sensing properties of thin- and thick-film tin-oxide materials. Sens. Actuat. B 77, 55–61 (2001).

    Article  CAS  Google Scholar 

  19. Teleki, A., Pratsinis, S. E., Kalyanasundaram, K. & Gouma, P. I. Sensing of organic vapors by flame-made TiO2 nanoparticles. Sens. Actuat. B 119, 683–690 (2006).

    Article  CAS  Google Scholar 

  20. Joshi, R. K. & Kruis, F. E. Influence of Ag particle size on ethanol sensing of SnO1.8:Ag nanoparticle films: a method to develop parts per billion level gas sensors. Appl. Phys. Lett. 89, 153116 (2006).

    Article  Google Scholar 

  21. Graf, M., Gurlo, A., Barsan, N., Weimar, U. & Hierlemann, A. Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J. Nanopart. Res. 8, 823–839 (2006).

    Article  CAS  Google Scholar 

  22. Mädler, L. et al. Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J. Nanopart. Res. 8, 783–796 (2006).

    Article  Google Scholar 

  23. Rodriguez-Perez, D., Castillo, J. L. & Antoranz, J. C. Relationship between particle deposit characteristics and the mechanism of particle arrival. Phys. Rev. E 72, 021403 (2005).

    Article  Google Scholar 

  24. Pecharromán, C., Esteban-Betegón, F., Bartolomé, J. F., López-Esteban, S. & Moya, J. S. New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (ɛr = 80000). Adv. Mater. 13, 1541–1544 (2001).

    Article  Google Scholar 

  25. Bolzan, A. A., Fong, C., Kennedy, B. J. & Howard, C. J. Structural studies of rutile-type metal dioxides. Acta Crystallogr. B 53, 373–380 (1997).

    Article  Google Scholar 

  26. Liu, Y., Koep, E. & Liu, M. L. Highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem. Mater. 17, 3997–4000 (2005).

    Article  CAS  Google Scholar 

  27. Kroneld, M. et al. Gas sensing properties of SnO2 thin films grown by MBE. Sens. Actuat. B 118, 110–114 (2006).

    Article  CAS  Google Scholar 

  28. Bruno, L., Pijolat, C. & Lalauze, R. Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: influence of grain size and thickness on the electrical properties. Sens. Actuat. B 18, 195–199 (1994).

    Article  CAS  Google Scholar 

  29. Lee, Y. C., Huang, H., Tan, O. K. & Tse, M. S. Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films. Sens. Actuat. B 132, 239–242 (2008).

    Article  CAS  Google Scholar 

  30. Hellegouarc'h, F., Arefi-Khonsari, F., Planade, R. & Amouroux, J. PECVD prepared SnO2 thin films for ethanol sensors. Sens. Actuat. B 73, 27–34 (2001).

    Article  CAS  Google Scholar 

  31. Zhao, Y., Feng, Z. & Liang, Y. SnO2 gas sensor films deposited by pulsed laser ablation. Sens. Actuat. B 56, 224–227 (1999).

    Article  CAS  Google Scholar 

  32. Bittencourt, C. et al. Influence of the deposition method on the morphology and elemental composition of SnO2 films for gas sensing: atomic force and X-ray photoemission spectroscopy analysis. Sens. Actuat. B 92, 67–72 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge stimulating discussions with T.D. Elmoe, and thank M. Righettoni and H. Keskinen for assistance with the experiments, F. Krumeich for electron microscope analysis and Competence Centre for Materials Science and Technology (CCMX) and NANocrystalline CERamic thin film coatings (NANCER) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.T. and S.E.P. conceived and designed the experiments. A.T. performed the experiments. A.T. and S.E.P. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Sotiris E. Pratsinis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tricoli, A., Pratsinis, S. Dispersed nanoelectrode devices. Nature Nanotech 5, 54–60 (2010). https://doi.org/10.1038/nnano.2009.349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing