Abstract
The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic–plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of surface plasmon polaritons by means of adiabatic compression through a metallic tapered waveguide to create strongly enhanced Raman excitation in a region just a few nanometres across. The tapered waveguide can also be used as an atomic force microscope tip. Using the device, topographic, chemical and structural information about silicon nanocrystals may be obtained with a spatial resolution of 7 nm.
Access options
Subscribe to Journal
Get full journal access for 1 year
$187.00
only $15.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Raether, H. Surface Plasmons (Springer, 1988).
- 2.
Masuhara, H. & Kawata, S. (eds) Nanoplasmonics Vol. 2 (Elsevier, 2006).
- 3.
Murray, W. A. & Barnes W. L. Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007).
- 4.
Kino, G. Tuning into optical wavelengths. Nature Photon. 2, 210–211 (2008) and references therein.
- 5.
Zheludev, N. I. What diffraction limit? Nature Mater. 7, 420–422 (2008).
- 6.
Zhang, X. & Liu, Z. Superlenses to overcome the diffraction limit. Nature Mater. 7, 435–441 (2008).
- 7.
Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).
- 8.
Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).
- 9.
Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).
- 10.
Verhagen, E., Kuipers, L. & Polman, A. Enhanced nonlinear optical effects with a tapered plasmonic waveguide. Nano Lett. 7, 334–337 (2007).
- 11.
Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).
- 12.
Merlein, J. et al. Nanomechanical control of an optical antenna. Nature Photon. 2, 230–233 (2008).
- 13.
Zenobi, R. Analytical tools for the nano world. Anal. Bioanal. Chem. 390, 215–221 (2008).
- 14.
Gerhardt, I. et al. Scanning near-field optical coherent spectroscopy of single molecules at 1.4 K. Opt. Lett. 32, 1420–1422 (2007).
- 15.
Hartschuh, A., Pedrosa, H. N., Novotny, L. & Krauss, T. D. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003).
- 16.
Di Fabrizio, E. et al. Procedimenti di fabbricazione di un dispositivo a crista llo fotonico provvisto di guida d'onda plasmonica. Italian patent TO2008A000693 (2008).
- 17.
Andreani, L. C. & Gerace, D. Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method. Phys. Rev. B 73, 235114 (2006).
- 18.
De Angelis, F. et al. Hybrid plasmonic–photonic nanodevice for label-free few/single molecule detection in the far field. Nano Lett. 8, 2321–2327 (2008).
- 19.
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).
- 20.
Babadjanian, A. J., Margaryan, N. L. & Nerkararyan, V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87, 3785–3793 (1999).
- 21.
Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3133 (2000).
- 22.
Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).
- 23.
Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).
- 24.
Hartschuh, A., Sanchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).
- 25.
Hu, D. H., Micic, M., Klymyshyn, N., Suh, Y. D. & Lu, H. P. Correlated topographic and spectroscopic imaging by combined atomic force microscopy and optical microscopy. J. Lumin. 107, 4–12 (2004).
- 26.
Anderson, N., Anger, P., Hartschuh, A. & Novotny, L. Subsurface Raman imaging with nanoscale resolution. Nano Lett. 6, 744–749 (2006).
- 27.
Mchedlidze, T. et al. Light-induced solid-to-solid phase transformation in Si nanolayers Si–SiO2 multiple quantum wells. Phys. Rev. B 77, 161304 (2008).
- 28.
Richter, H., Wang, Z. P. & Ley, L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981).
- 29.
dos Santos, D. R. & Torriani, I. L. Crystallite size determination in μc–Ge films by X-ray diffraction and Raman line profile analysis. Solid State Commun. 85, 307–309 (1993).
- 30.
Kohno, H., Iwasaki, T., Mita, Y. & Takeda, S. One-phonon Raman scattering studies of chains of crystalline-Si nanospheres. J. Appl. Phys. 91, 3232–3235 (2002).
- 31.
Fauchet, P. H. & Campbell, I. H. Raman spectroscopy of low dimensional semiconductors. Crit. Rev. Solid State Mater. Sci. 14, S79–S101 (1988).
- 32.
Rojas, S., Zanotti, L., Borghesi, A., Sasella, A. & Pignatel, G. U. Characterization of silicon dioxide and phosphosilicate glass deposited films. J. Vac. Sci. Technol. B 11, 2081–2089 (1993).
- 33.
Daldosso, N. et al. Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 101, 113510 (2007).
- 34.
Khriachtchev, L., Rasanen, M. & Novikov, S. Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO2 superlattice. Appl. Phys. Lett. 88, 013102 (2006).
Acknowledgements
This work was funded under European Project DIPNA FP6-STREP proposal no. 032131, Project SMD FP7-NMP 2800-SMALL-2 proposal no. CP-FP 229375-2, MIUR-PRIN2008 project—Italian Ministry of University and Research, FIRB contract no. RBAP06L4S5, Fondazione Cariplo project 2007-5259, and project POSEIDON under POR Calabria 2006-2008. M.L. and A.B. acknowledge funding from FP6-BINASP-SSA011936 project.
Author information
Affiliations
Fondazione Istituto Italiano di Tecnologia (IIT), NanoBioScience Laboratory, via Morego 30, I16163 Genova, Italy
- Francesco De Angelis
- , Gobind Das
- & Enzo Di Fabrizio
BIONEM Lab, University of Magna Graecia, Campus S. Venuta, Germaneto, viale Europa, I88100 Catanzaro, Italy
- Francesco De Angelis
- , Patrizio Candeloro
- , Carlo Liberale
- & Enzo Di Fabrizio
Department of Physics ‘A. Volta’ and UdR CNISM, University of Pavia, via Bassi 6, I27100 Pavia, Italy
- Maddalena Patrini
- , Matteo Galli
- , Ivan Maksymov
- & Lucio Claudio Andreani
CBM scrl Area Science Park — Basovizza, I34012 Trieste, Italy
- Alpan Bek
- & Marco Lazzarino
TASC National Laboratory, CNR-INFM, Area Science Park — Basovizza, I34012 Trieste, Italy
- Marco Lazzarino
Authors
Search for Francesco De Angelis in:
Search for Gobind Das in:
Search for Patrizio Candeloro in:
Search for Maddalena Patrini in:
Search for Matteo Galli in:
Search for Alpan Bek in:
Search for Marco Lazzarino in:
Search for Ivan Maksymov in:
Search for Carlo Liberale in:
Search for Lucio Claudio Andreani in:
Search for Enzo Di Fabrizio in:
Contributions
All authors contributed significantly to the work presented in this paper.
Corresponding author
Correspondence to Enzo Di Fabrizio.
Supplementary information
PDF files
- 1.
Supplementary information
Supplementary information
Videos
- 1.
Supplementary information
Supplementary movie 1
- 2.
Supplementary information
Supplementary movie 2
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials
Analytical and Bioanalytical Chemistry (2018)
-
Combination of scanning probe technology with photonic nanojets
Scientific Reports (2017)
-
Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Optical Fiber
Scientific Reports (2017)
-
Plasmonic hot electron transport drives nano-localized chemistry
Nature Communications (2017)
-
Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging
Nature Nanotechnology (2016)