Article | Published:

Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons

Nature Nanotechnology volume 5, pages 6772 (2010) | Download Citation

Subjects

Abstract

The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic–plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of surface plasmon polaritons by means of adiabatic compression through a metallic tapered waveguide to create strongly enhanced Raman excitation in a region just a few nanometres across. The tapered waveguide can also be used as an atomic force microscope tip. Using the device, topographic, chemical and structural information about silicon nanocrystals may be obtained with a spatial resolution of 7 nm.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Surface Plasmons (Springer, 1988).

  2. 2.

    & (eds) Nanoplasmonics Vol. 2 (Elsevier, 2006).

  3. 3.

    & Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007).

  4. 4.

    Tuning into optical wavelengths. Nature Photon. 2, 210–211 (2008) and references therein.

  5. 5.

    What diffraction limit? Nature Mater. 7, 420–422 (2008).

  6. 6.

    & Superlenses to overcome the diffraction limit. Nature Mater. 7, 435–441 (2008).

  7. 7.

    et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

  8. 8.

    , & Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

  9. 9.

    , , & A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

  10. 10.

    , & Enhanced nonlinear optical effects with a tapered plasmonic waveguide. Nano Lett. 7, 334–337 (2007).

  11. 11.

    , , & Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

  12. 12.

    et al. Nanomechanical control of an optical antenna. Nature Photon. 2, 230–233 (2008).

  13. 13.

    Analytical tools for the nano world. Anal. Bioanal. Chem. 390, 215–221 (2008).

  14. 14.

    et al. Scanning near-field optical coherent spectroscopy of single molecules at 1.4 K. Opt. Lett. 32, 1420–1422 (2007).

  15. 15.

    , , & Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003).

  16. 16.

    et al. Procedimenti di fabbricazione di un dispositivo a crista llo fotonico provvisto di guida d'onda plasmonica. Italian patent TO2008A000693 (2008).

  17. 17.

    & Photonic crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method. Phys. Rev. B 73, 235114 (2006).

  18. 18.

    et al. Hybrid plasmonic–photonic nanodevice for label-free few/single molecule detection in the far field. Nano Lett. 8, 2321–2327 (2008).

  19. 19.

    Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

  20. 20.

    , & Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87, 3785–3793 (1999).

  21. 21.

    Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3133 (2000).

  22. 22.

    , , & Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

  23. 23.

    , , & Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

  24. 24.

    , , & High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

  25. 25.

    , , , & Correlated topographic and spectroscopic imaging by combined atomic force microscopy and optical microscopy. J. Lumin. 107, 4–12 (2004).

  26. 26.

    , , & Subsurface Raman imaging with nanoscale resolution. Nano Lett. 6, 744–749 (2006).

  27. 27.

    et al. Light-induced solid-to-solid phase transformation in Si nanolayers Si–SiO2 multiple quantum wells. Phys. Rev. B 77, 161304 (2008).

  28. 28.

    , & The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981).

  29. 29.

    & Crystallite size determination in μc–Ge films by X-ray diffraction and Raman line profile analysis. Solid State Commun. 85, 307–309 (1993).

  30. 30.

    , , & One-phonon Raman scattering studies of chains of crystalline-Si nanospheres. J. Appl. Phys. 91, 3232–3235 (2002).

  31. 31.

    & Raman spectroscopy of low dimensional semiconductors. Crit. Rev. Solid State Mater. Sci. 14, S79–S101 (1988).

  32. 32.

    , , , & Characterization of silicon dioxide and phosphosilicate glass deposited films. J. Vac. Sci. Technol. B 11, 2081–2089 (1993).

  33. 33.

    et al. Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 101, 113510 (2007).

  34. 34.

    , & Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO2 superlattice. Appl. Phys. Lett. 88, 013102 (2006).

Download references

Acknowledgements

This work was funded under European Project DIPNA FP6-STREP proposal no. 032131, Project SMD FP7-NMP 2800-SMALL-2 proposal no. CP-FP 229375-2, MIUR-PRIN2008 project—Italian Ministry of University and Research, FIRB contract no. RBAP06L4S5, Fondazione Cariplo project 2007-5259, and project POSEIDON under POR Calabria 2006-2008. M.L. and A.B. acknowledge funding from FP6-BINASP-SSA011936 project.

Author information

Affiliations

  1. Fondazione Istituto Italiano di Tecnologia (IIT), NanoBioScience Laboratory, via Morego 30, I16163 Genova, Italy

    • Francesco De Angelis
    • , Gobind Das
    •  & Enzo Di Fabrizio
  2. BIONEM Lab, University of Magna Graecia, Campus S. Venuta, Germaneto, viale Europa, I88100 Catanzaro, Italy

    • Francesco De Angelis
    • , Patrizio Candeloro
    • , Carlo Liberale
    •  & Enzo Di Fabrizio
  3. Department of Physics ‘A. Volta’ and UdR CNISM, University of Pavia, via Bassi 6, I27100 Pavia, Italy

    • Maddalena Patrini
    • , Matteo Galli
    • , Ivan Maksymov
    •  & Lucio Claudio Andreani
  4. CBM scrl Area Science Park — Basovizza, I34012 Trieste, Italy

    • Alpan Bek
    •  & Marco Lazzarino
  5. TASC National Laboratory, CNR-INFM, Area Science Park — Basovizza, I34012 Trieste, Italy

    • Marco Lazzarino

Authors

  1. Search for Francesco De Angelis in:

  2. Search for Gobind Das in:

  3. Search for Patrizio Candeloro in:

  4. Search for Maddalena Patrini in:

  5. Search for Matteo Galli in:

  6. Search for Alpan Bek in:

  7. Search for Marco Lazzarino in:

  8. Search for Ivan Maksymov in:

  9. Search for Carlo Liberale in:

  10. Search for Lucio Claudio Andreani in:

  11. Search for Enzo Di Fabrizio in:

Contributions

All authors contributed significantly to the work presented in this paper.

Corresponding author

Correspondence to Enzo Di Fabrizio.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary information

    Supplementary movie 1

  2. 2.

    Supplementary information

    Supplementary movie 2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2009.348

Further reading