Atomic force microscopy as a tool for atom manipulation

Abstract

During the past 20 years, the manipulation of atoms and molecules at surfaces has allowed the construction and characterization of model systems that could, potentially, act as building blocks for future nanoscale devices. The majority of these experiments were performed with scanning tunnelling microscopy at cryogenic temperatures. Recently, it has been shown that another scanning probe technique, the atomic force microscope, is capable of positioning single atoms even at room temperature. Here, we review progress in the manipulation of atoms and molecules with the atomic force microscope, and discuss the new opportunities presented by this technique.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: | Lateral-interchange atomic manipulation with an AFM.
Figure 2: | Vertical-interchange atomic manipulation.
Figure 3: | Atomic-scale manipulation at surfaces of insulating bulk materials.
Figure 4: | Tip–surface interaction forces and potential maps during atom manipulation76.

References

  1. 1

    Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    Article  Google Scholar 

  2. 2

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    CAS  Article  Google Scholar 

  3. 3

    Lyo, I.-W. & Avouris, P. Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM. Science 253, 173–176 (1991).

    CAS  Article  Google Scholar 

  4. 4

    Eigler, D. M., Lutz, C. P. & Rudger, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991).

    CAS  Article  Google Scholar 

  5. 5

    Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Nilius, N., Wallis, T. M. & Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 297, 1853–1856 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal-molecule-metal bridge. Science 302, 77–81 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Heller, E. J., Crommie, M. F., Lutz, C. P. & Eigler, D. M. Scattering and adsorption of surface electron waves in quantum corrals. Nature 369, 464–466 (1994).

    Article  Google Scholar 

  13. 13

    Manoharan, H., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Moon, C. R., Mattos, L. S., Foster, B. K., Zeltzer, G. & Manoharan, H. C. Quantum holographic encoding in a two-dimensional electron gas. Nature Nanotech. 4, 167–172 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Kitchen, D., Richardella, A., Tang, J.-M., Flatté, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Yamachika, R., Grobis, M., Wachowiak, A. & Crommie, M. F. Controlled atomic doping of a single C60 molecule. Science 304, 281–284 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Jung, T. A., Schlittler, R. R., Gimzewski, J. K., Tang, H. & Joachim, C. Controlled room temperature positioning of individual molecules: Molecular flexure and motion. Science 271, 181–184 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Gimzewski, J. K. et al. Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Stipe, B. C. & Ho, W. Inducing and viewing the rotational motion of a single molecule. Science 279, 1907–1909 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295, 2055–2058 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Pascual, J. I., Lorente, N., Song, Z., Conrad, H. & Rust, H.-P. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Lee, H. J. & Ho, W. Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719–1722 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Chen, W., Jamneala, T., Madhavan, V. & Crommie, M. F. Disappearance of the Kondo resonance for atomically fabricated cobalt dimers. Phys. Rev. B 60, R8529 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1023 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Giessibl, F. J. & Quate, C. F. Exploring the nanoworld with atomic force microscopy. Physics Today 59, 44–50 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    CAS  Article  Google Scholar 

  28. 28

    García, R. & Pérez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).

    Article  Google Scholar 

  29. 29

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    CAS  Article  Google Scholar 

  30. 30

    Gerber, C. & Lang, H. How the doors to the nanoworld were opened. Nature Nanotech. 1, 3–5 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120–123 (1983).

    CAS  Article  Google Scholar 

  32. 32

    Giessibl, F. J. Atomic resolution of the silicon(111)-(7 × 7) surface by atomic force microscopy. Science 267, 68–71 (1995).

    CAS  Article  Google Scholar 

  33. 33

    Sugimoto, Y. et al. Atom inlays performed at room temperature using atomic force microscopy. Nature Mater. 4, 156–159 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Binnig, G. & Rohrer, H. In touch with atoms. Rev. Mod. Phys. 71, S324 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Pérez, R., Payne, M., Štich, I. & Terakura, K. Role of covalent tip-surface interactions in noncontact atomic force microscopy. Phys. Rev. Lett. 78, 678–681 (1997).

    Article  Google Scholar 

  36. 36

    Livshits, A. I., Shluger, A. L., Rohl, A. L. & Foster, A. S. Model of noncontact scanning force microscopy on ionic surfaces. Phys. Rev. B 59, 2436–2448 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Dieška, P., Štich, I. & Pérez, R. Covalent and reversible short-range electrostatic imaging in noncontact atomic force microscopy. Phys. Rev. Lett. 91, 216401 (2003).

    Article  CAS  Google Scholar 

  38. 38

    Hölscher, H., Allers, W., Schwarz, U. D., Schwarz, A. & Wiesendanger, R. Simulation of NC-AFM images of xenon(111). Appl. Phys. A 72, S35–S38 (2001).

    Article  Google Scholar 

  39. 39

    Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  40. 40

    Guggisberg, M. et al. Separation of interactions by noncontact force microscopy. Phys. Rev. B 61, 11151–11155 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Giessibl, F. J., Hembacher, S., Herz, M., Schiller, C. & Mannhart, J. Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor. Nanotechnology 15, S79–S86 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Hosoki, S., Hosaka, S. & Hasegawa, T. Surface modification of MoS2 using an STM. Appl. Surf. Sci. 60–61, 643–647 (1992).

    Article  Google Scholar 

  43. 43

    Stroscio, J. A. & Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319–1326 (1991).

    CAS  Article  Google Scholar 

  44. 44

    Bartels, L., Meyer, G. & Rieder, K.-H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997).

    CAS  Article  Google Scholar 

  45. 45

    Oyabu, N., Custance, O., Yi, I., Sugawara, Y. & Morita, S. Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys. Rev. Lett. 90, 176102 (2003).

    Article  CAS  Google Scholar 

  46. 46

    Oyabu, N., Sugimoto, Y., Abe, M., Custance, O. & Morita, S. Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy. Nanotechnology 16, S112–S117 (2005).

    CAS  Article  Google Scholar 

  47. 47

    Brihuega, I., Custance, O. & Gómez-Rodríguez, J. M. Surface diffusion of single vacancies on Ge(111)-c(2 × 8) studied by variable temperature scanning tunneling microscopy. Phys. Rev. B 70, 165410 (2004).

    Article  CAS  Google Scholar 

  48. 48

    Pizzagalli, L. & Baratoff, A. Theory of single atom manipulation with a scanning probe tip: Force signatures, constant-height, and constant-force scans. Phys. Rev. B 68, 115427 (2003).

    Article  CAS  Google Scholar 

  49. 49

    Dieška, P., Štich, I. & Pérez, R. Nanomanipulation using only mechanical energy. Phys. Rev. Lett. 95, 126103 (2005).

    Article  CAS  Google Scholar 

  50. 50

    Meyer, G. et al. Manipulation of atoms and molecules with the low-temperature scanning tunneling microscope. Jpn. J. Appl. Phys. 40, 4409–4413 (2001).

    CAS  Article  Google Scholar 

  51. 51

    Cuberes, M. T., Schlittler, R. R. & Gimzewski, J. K. Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device. Appl. Phys. Lett. 69, 3016–3018 (1996).

    CAS  Article  Google Scholar 

  52. 52

    Sugimoto, Y., Custance, O., Abe, M. & Morita, S. Site-specific force spectroscopy and atom interchange manipulation at room temperature. e-J. Surf. Sci. Nanotech. 4, 376–383 (2006).

    CAS  Article  Google Scholar 

  53. 53

    Sugimoto, Y., Miki, K., Abe, M. & Morita, S. Statistics of lateral atom manipulation by atomic force microscopy at room temperature. Phys. Rev. B 78, 205305 (2008).

    Article  CAS  Google Scholar 

  54. 54

    Sugimoto, Y. et al. Mechanism for room-temperature single-atom lateral manipulations on semiconductors using dynamic force microscopy. Phys. Rev. Lett. 98, 106104 (2007).

    Article  CAS  Google Scholar 

  55. 55

    Dieška, P. & Štich, I. Nanoengineering with dynamic atomic force microscopy: Lateral interchange of adatoms on a Ge(111)-c(2 × 8) surface. Phys. Rev. B 79, 125431 (2009).

    Article  CAS  Google Scholar 

  56. 56

    Sugimoto, Y. et al. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322, 413–417 (2008).

    CAS  Article  Google Scholar 

  57. 57

    Bammerlin, M. et al. Dynamic SFM with true atomic resolution on alkali halide surfaces. Appl. Phys. A 66, S293–S294 (1998).

    CAS  Article  Google Scholar 

  58. 58

    Reichling, M. & Barth, C. Scanning force imaging of atomic size defects on the CaF2(111) surface. Phys. Rev. Lett. 83, 768–771 (1999).

    CAS  Article  Google Scholar 

  59. 59

    Hölscher, H., Langkat, S. M., Schwarz, A. & Wiesendanger, R. Measurement of three dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl. Phys. Lett. 81, 4428–4430 (2002).

    Article  CAS  Google Scholar 

  60. 60

    Barth, C. & Henry, C. Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys. Rev. Lett. 91, 196102 (2003).

    Article  CAS  Google Scholar 

  61. 61

    Torbrügge, S., Reichling, M., Ishiyama, A., Morita, S. & Custance, O. Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). Phys. Rev. Lett. 99, 056101 (2007).

    Article  CAS  Google Scholar 

  62. 62

    Hakala, M. H., Pakarinen, O. H. & Foster, A. S. First-principles study of adsorption, diffusion, and charge stability of metal adatoms on alkali halide surfaces. Phys. Rev. B 78, 045418 (2008).

    Article  CAS  Google Scholar 

  63. 63

    Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).

    CAS  Article  Google Scholar 

  64. 64

    Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    CAS  Article  Google Scholar 

  65. 65

    Hirth, S., Ostendorf, F. & Reichling, M. Lateral manipulation of atomic size defects on the CaF2(111) surface. Nanotechnology 17, S148–S154 (2006).

    CAS  Article  Google Scholar 

  66. 66

    Nishi, R., Miyagawa, D., Seino, Y., Yi, I. & Morita, S. Non-contact atomic force microscopy study of atomic manipulation on an insulator surface by nanoindentation. Nanotechnology 17, S142–S147 (2006).

    CAS  Article  Google Scholar 

  67. 67

    Trevethan, T., Watkins, M., Kantorovich, L. N. & Shluger, A. L. Controlled manipulation of atoms in insulating surfaces with the virtual atomic force microscope. Phys. Rev. Lett. 98, 028101 (2007).

    CAS  Article  Google Scholar 

  68. 68

    Watkins, M. B. & Shluger, A. L. Manipulation of defects on oxide surfaces via barrier reduction induced by atomic force microscope tips. Phys. Rev. B 73, 245435 (2006).

    Article  CAS  Google Scholar 

  69. 69

    Trevethan, T., Kantorovich, L., Polesel-Maris, J., Gauthier, S. & Shluger, A. Multiscale model of the manipulation of single atoms on insulating surfaces using an atomic force microscope tip. Phys. Rev. B 76, 085414 (2007).

    Article  CAS  Google Scholar 

  70. 70

    Lantz, M. A. et al. Quantitative measurement of short-range chemical bonding forces. Science 291, 2580–2583 (2001).

    CAS  Article  Google Scholar 

  71. 71

    Hoffmann, R., Kantorovich, L. N., Baratoff, A., Hug, H. J. & Güntherodt, H.-J. Sublattice identification in scanning force microscopy on alkali halide surfaces. Phys. Rev. Lett. 92, 146103 (2004).

    CAS  Article  Google Scholar 

  72. 72

    Oyabu, N. et al. Single atomic contact adhesion and dissipation in dynamic force microscopy. Phys. Rev. Lett. 96, 106101 (2006).

    Article  CAS  Google Scholar 

  73. 73

    Abe, M., Sugimoto, Y., Custance, O. & Morita, S. Room-temperature reproducible spatial force spectroscopy using atom-tracking technique. Appl. Phys. Lett. 87, 173503 (2005).

    Article  CAS  Google Scholar 

  74. 74

    Sugimoto, Y., Innami, S., Abe, M., Custance, O. & Morita, S. Dynamic force spectroscopy using cantilever higher flexural modes. Appl. Phys. Lett. 91, 093120 (2007).

    Article  CAS  Google Scholar 

  75. 75

    Schirmeisen, A., Weiner, D. & Fuchs, H. Single-atom contact mechanics: From atomic scale energy barrier to mechanical relaxation hysteresis. Phys. Rev. Lett. 97, 136101 (2006).

    Article  CAS  Google Scholar 

  76. 76

    Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    CAS  Article  Google Scholar 

  77. 77

    Albers, B. J. et al. Three-dimensional imaging of short-range chemical forces with picometre resolution. Nature Nanotech. 4, 307–310 (2009).

    CAS  Article  Google Scholar 

  78. 78

    Giessibl, F. J. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010–16015 (1997).

    CAS  Article  Google Scholar 

  79. 79

    Hölscher, H. et al. Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique. Phys. Rev. B 64, 075402 (2001).

    Article  CAS  Google Scholar 

  80. 80

    Dürig, U. Extracting interaction forces and complementary observables in dynamic probe microscopy. Appl. Phys. Lett. 76, 1203–1205 (2000).

    Article  Google Scholar 

  81. 81

    Gotsmann, B., Anczykowski, B., Seidel, C. & Fuchs, H. Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves. Appl. Surf. Sci. 140, 314–319 (1999).

    CAS  Article  Google Scholar 

  82. 82

    Giessibl, F. J. A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl. Phys. Lett. 78, 123–125 (2001).

    CAS  Article  Google Scholar 

  83. 83

    Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).

    CAS  Article  Google Scholar 

  84. 84

    Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998).

    CAS  Article  Google Scholar 

  85. 85

    Giessibl, F. J. Atomic resolution on Si(111)-(7 × 7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000).

    CAS  Article  Google Scholar 

  86. 86

    Custance, O. & Morita, S. How to move an atom. Science 319, 1051–1052 (2008).

    CAS  Article  Google Scholar 

  87. 87

    Mativetsky, J., Burke, S. A., Hoffmann, R., Sun, Y. & Grutter, P. Molecular resolution imaging of C60 on Au(111) by non-contact atomic force microscopy. Nanotechnology 15, S40–S43 (2004).

    CAS  Article  Google Scholar 

  88. 88

    Atodiresei, N., Caciuc, V., Blügel, S. & Hölscher, H. Manipulation of benzene on Cu(110) by dynamic force microscopy: An ab initio study. Phys. Rev. B 77, 153408 (2008).

    Article  CAS  Google Scholar 

  89. 89

    Glatzel, T., Zimmerli, L., Koch, S., Kawai, S. & Meyer, E. Molecular assemblies grown between metallic contacts on insulating surfaces. Appl. Phys. Lett. 94, 063303 (2009).

    Article  CAS  Google Scholar 

  90. 90

    Martsinovich, N. & Kantorovich, L. Modelling the manipulation of C60 on the Si(001) surface performed with NC-AFM. Nanotechnology 20, 135706 (2009).

    CAS  Article  Google Scholar 

  91. 91

    Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007).

    CAS  Article  Google Scholar 

  92. 92

    Lazo, C., Caciuc, V., Hölscher, H. & Heinze, S. Role of tip size, orientation, and structural relaxations in first-principles studies of magnetic exchange force microscopy and spin-polarized scanning tunneling microscopy. Phys. Rev. B 78, 214416 (2008).

    Article  CAS  Google Scholar 

  93. 93

    Schmidt, R. et al. Probing the magnetic exchange forces of iron on the atomic scale. Nano Lett. 9, 200–204 (2009).

    CAS  Article  Google Scholar 

  94. 94

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    CAS  Article  Google Scholar 

  95. 95

    Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    CAS  Article  Google Scholar 

  96. 96

    Gross, L. et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009).

    CAS  Article  Google Scholar 

  97. 97

    Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    CAS  Article  Google Scholar 

  98. 98

    Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 445, 64–67 (2007).

    Article  CAS  Google Scholar 

  99. 99

    Enevoldsen, G. H. et al. Imaging of the hydrogen subsurface site in rutile TiO2 . Phys. Rev. Lett. 102, 136103 (2009).

    Article  CAS  Google Scholar 

  100. 100

    Özer, H. Ö., O'Brien, S. J. & Pethica, J. B. Local force gradients on Si(111) during simultaneous scanning tunneling/atomic force microscopy. Appl. Phys. Lett. 90, 133110 (2007).

    Article  CAS  Google Scholar 

  101. 101

    Sawada, D., Sugimoto, Y., Morita, K., Abe, M. & Morita, S. Simultaneous measurement of force and tunneling current at room temperature. Appl. Phys. Lett. 94, 173117 (2009).

    Article  CAS  Google Scholar 

  102. 102

    Clauss, W., Zhang, J., Bergeron, D. J. & Johnson, A. T. Application and calibration of a quartz needle sensor for high resolution scanning force microscopy. J. Vac. Sci. Technol. B 17, 1309–1312 (1999).

    CAS  Article  Google Scholar 

  103. 103

    An, T. et al. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator. Rev. Sci. Instrum. 79, 033703 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Ternes, A. Heinrich and T. Trevethan for providing graphic material. Work supported by Grants in Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Ministerio de Ciencia e Innovación of Spain (MICINN, projects MAT2008–02929–NAN and MAT2008–02939–E) and by the Friction and Adhesion in Nanomechanical Systems (FANAS) Programme of the European Science Foundation under the Atomic Friction (AFRI) project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oscar Custance.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Custance, O., Perez, R. & Morita, S. Atomic force microscopy as a tool for atom manipulation. Nature Nanotech 4, 803–810 (2009). https://doi.org/10.1038/nnano.2009.347

Download citation

Further reading