Abstract
Colossal magnetoresistance is a dramatic decrease in resistivity caused by applied magnetic fields1,2,3,4, and has been the focus of much research because of its potential for magnetic data storage using materials such as manganites. Although extensive microscopy and theoretical studies5,6,7,8,9,10,11 have shown that colossal magnetoresistance involves competing insulating and ferromagnetic conductive phases, the mechanism underlying the effect remains unclear. Here, by directly observing magnetic domain walls and flux distributions using cryogenic Lorentz microscopy and electron holography12,13,14, we demonstrate that an applied magnetic field assists nucleation and growth of an ordered ferromagnetic phase. These results provide new insights into the evolution dynamics of complex domain structures at the nanoscale, and help to explain anomalous phase separation phenomena that are relevant for applications3,15,16,17,18,19. Our approach can also be used to determine magnetic parameters of nanoscale regions, such as magnetocrystalline anisotropy and exchange stiffness, without bulk magnetization results or neutron scattering data.
Access options
Subscribe to Journal
Get full journal access for 1 year
$187.00
only $15.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Jin, S. et al. Thousand-fold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).
- 2.
Tokura, Y. et al. Giant magnetotransport phenomena in filling-controlled Kondo lattice system: La1–xSrxMnO3. J. Phys. Soc. Jpn 63, 3931–3935 (1994).
- 3.
Tokura, Y. Colossal Magnetoresistive Oxides (Gordon and Breach Science Publishers, 2000).
- 4.
Millis, A. J. Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998).
- 5.
Fäth, M. et al. Spatially inhomogeneous metal–insulator transition in doped manganites. Science 285, 1540–1542 (1999).
- 6.
Zhang, L., Israel, C., Biswas, A., Greene, R. L. & de Lozanne, A. Direct observation of percolation in a manganite thin film. Science 298, 805–807 (2002).
- 7.
Asaka, T. et al. Ferromagnetic domain structures and nanoclusters in Nd1/2Sr1/2MnO3. Phys. Rev. Lett. 89, 207203 (2002).
- 8.
Murakami, Y., Yoo, J. H., Shindo, D., Atou, T. & Kikuchi, M. Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003).
- 9.
Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer-Verlag, 2003).
- 10.
Moreo, A., Yunoki, S. & Dagotto, E. Phase separation scenario for manganese oxides and related materials. Science 283, 2034–2040 (1999).
- 11.
Mayr, M. et al. Resistivity of mixed-phase manganites. Phys. Rev. Lett. 86, 135–138 (2001).
- 12.
De Graef, M. & Zhu, Y. Magnetic Imaging and its Applications to Materials (Academic Press, 2001).
- 13.
Tonomura, A. Electron Holography (Springer-Verlag, 1999).
- 14.
McCartney, M. R. & Smith, D. J. Electron holography: phase imaging with nanometer resolution. Ann. Rev. Mater. Res. 37, 729–767 (2007).
- 15.
Sawano, F. et al. An organic thyristor. Nature 437, 522–524 (2005).
- 16.
Liu, S. Q., Wu, N. J. & Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).
- 17.
Wu, W. et al. Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet. Nature Mater. 5, 881–886 (2006).
- 18.
Marcano, N., Gómez Sal, J. C., Espeso, J. I., Fernández Barquín, L. & Paulsen, C. Cluster-glass percolative scenario in CeNi1–xCux studied by very low-temperature a.c. susceptibility and d.c. magnetization. Phys. Rev. B 76, 224419 (2007).
- 19.
Bokov, A. A. & Ye, Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).
- 20.
Mathur, N. & Littlewood, P. Mesoscopic texture in manganites. Phys. Today 56, 25–30 (2003).
- 21.
Milward, G. C., Calderón, M. J. & Littlewood, P. B. Electronically soft phases in manganites. Nature 433, 607–610 (2005).
- 22.
Ward, T. Z. et al. Reemergent metal–insulator transitions in manganites exposed with spatial confinement. Phys. Rev. Lett. 100, 247204 (2008).
- 23.
Uehara, M., Mori, S., Chen, C. H. & Cheong, S.-W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).
- 24.
Kim, H. H., Uehara, M., Hess, C., Sharma, P. A. & Cheong, S.-W. Thermal and electronic transport properties and two-phase mixtures in La5/8–xPrxCa3/8MnO3. Phys. Rev. Lett. 84, 2961–2964 (2000).
- 25.
Mori, S., Asaka, T. & Matsui, Y. Observation of magnetic domain structure in phase-separated manganites by Lorentz electron microscopy. J. Electron Microsc. 51, 225–229 (2002).
- 26.
Tonomura, A. et al. Observation of individual vortices trapped along columnar defects in high-temperature superconductors. Nature 412, 620–622 (2001).
- 27.
Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004).
- 28.
Hubert, A. & Schäfer, R. Magnetic Domains (Springer-Verlag, 2000).
- 29.
McCartney, M. R. & Zhu, Y. Off-axis electron holographic mapping of magnetic domains in Nd2Fe14B. J. Appl. Phys. 83, 6414–6416 (1998).
- 30.
Mathur, N. D., Jo, M.-H., Evetts, J. E. & Blamire, M. G. Magnetic anisotropy of thin film La0.7Ca0.3MnO3 on untwinned paramagnetic NdGaO3 (001). J. Appl. Phys. 89, 3388–3392 (2001).
- 31.
Lynn, J. W. et al. Unconventional ferromagnetic transition in La1–xCaxMnO3. Phys. Rev. Lett. 76, 4046–4049 (1996).
- 32.
Kainuma, R. et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006).
- 33.
Murakami, Y. & Shindo, D. Change in microstructure near the R-phase transformation in Ti50Ni48Fe2 studied by in situ electron microscopy. Phil. Mag. Lett. 81, 631–638 (2001).
- 34.
Loudon, J. C., Mathur, N. D. & Midgley, P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature 420, 797–800 (2002).
Acknowledgements
This work was supported by the research fund of Okinawa Institute of Science and Technology. The authors are indebted to K. Harada for preparing the video clips.
Author information
Author notes
- J. J. Kim
Present address: Samsung Electronics, Hwasung City 445-701, Korea
Affiliations
Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0411, Japan
- Y. Murakami
- , H. Kasai
- , J. J. Kim
- , S. Mamishin
- , D. Shindo
- & A. Tonomura
IMRAM, Tohoku University, Sendai 980-8577, Japan
- Y. Murakami
- & D. Shindo
Advanced Research Laboratory, Hitachi, Hatoyama, Saitama 350-0395, Japan
- H. Kasai
- & A. Tonomura
Hitachi High-Technologies, Hitachinaka, Ibaraki 312-8504, Japan
- S. Mamishin
Department of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan
- S. Mori
Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
- A. Tonomura
Authors
Search for Y. Murakami in:
Search for H. Kasai in:
Search for J. J. Kim in:
Search for S. Mamishin in:
Search for D. Shindo in:
Search for S. Mori in:
Search for A. Tonomura in:
Contributions
Y.M., H.K., D.S. and A.T. conceived and designed the experiments. Y.M., H.K., J.J.K., S. Mamishin and S. Mori performed the experiments. S. Mori contributed materials and Y.M. analysed the data. All authors discussed the results and commented on the manuscript.
Corresponding author
Correspondence to Y. Murakami.
Supplementary information
PDF files
- 1.
Supplementary information
Supplementary information
Videos
- 1.
Supplementary information
Supplementary movie 1
- 2.
Supplementary information
Supplementary movie 2
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
Chemical ordering suppresses large-scale electronic phase separation in doped manganites
Nature Communications (2016)
-
Evolution and control of the phase competition morphology in a manganite film
Nature Communications (2015)
-
Resolving transitions in the mesoscale domain configuration in VO2 using laser speckle pattern analysis
Scientific Reports (2015)
-
Magnetization amplified by structural disorder within nanometre-scale interface region
Nature Communications (2014)
-
Anomalous phase separation in La0.225Pr0.4Ca0.375MnO3: consequence of temperature and magnetic-field cycles
Applied Physics A (2011)