Letter | Published:

Ferromagnetic domain nucleation and growth in colossal magnetoresistive manganite

Nature Nanotechnology volume 5, pages 3741 (2010) | Download Citation

Subjects

Abstract

Colossal magnetoresistance is a dramatic decrease in resistivity caused by applied magnetic fields1,2,3,4, and has been the focus of much research because of its potential for magnetic data storage using materials such as manganites. Although extensive microscopy and theoretical studies5,6,7,8,9,10,11 have shown that colossal magnetoresistance involves competing insulating and ferromagnetic conductive phases, the mechanism underlying the effect remains unclear. Here, by directly observing magnetic domain walls and flux distributions using cryogenic Lorentz microscopy and electron holography12,13,14, we demonstrate that an applied magnetic field assists nucleation and growth of an ordered ferromagnetic phase. These results provide new insights into the evolution dynamics of complex domain structures at the nanoscale, and help to explain anomalous phase separation phenomena that are relevant for applications3,15,16,17,18,19. Our approach can also be used to determine magnetic parameters of nanoscale regions, such as magnetocrystalline anisotropy and exchange stiffness, without bulk magnetization results or neutron scattering data.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Thousand-fold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).

  2. 2.

    Giant magnetotransport phenomena in filling-controlled Kondo lattice system: La1–xSrxMnO3. J. Phys. Soc. Jpn 63, 3931–3935 (1994).

  3. 3.

    Colossal Magnetoresistive Oxides (Gordon and Breach Science Publishers, 2000).

  4. 4.

    Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998).

  5. 5.

    Spatially inhomogeneous metal–insulator transition in doped manganites. Science 285, 1540–1542 (1999).

  6. 6.

    , , , & de Lozanne, A. Direct observation of percolation in a manganite thin film. Science 298, 805–807 (2002).

  7. 7.

    et al. Ferromagnetic domain structures and nanoclusters in Nd1/2Sr1/2MnO3. Phys. Rev. Lett. 89, 207203 (2002).

  8. 8.

    , , , & Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003).

  9. 9.

    Nanoscale Phase Separation and Colossal Magnetoresistance (Springer-Verlag, 2003).

  10. 10.

    , & Phase separation scenario for manganese oxides and related materials. Science 283, 2034–2040 (1999).

  11. 11.

    Resistivity of mixed-phase manganites. Phys. Rev. Lett. 86, 135–138 (2001).

  12. 12.

    & Magnetic Imaging and its Applications to Materials (Academic Press, 2001).

  13. 13.

    Electron Holography (Springer-Verlag, 1999).

  14. 14.

    & Electron holography: phase imaging with nanometer resolution. Ann. Rev. Mater. Res. 37, 729–767 (2007).

  15. 15.

    et al. An organic thyristor. Nature 437, 522–524 (2005).

  16. 16.

    , & Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).

  17. 17.

    Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet. Nature Mater. 5, 881–886 (2006).

  18. 18.

    , , , & Cluster-glass percolative scenario in CeNi1–xCux studied by very low-temperature a.c. susceptibility and d.c. magnetization. Phys. Rev. B 76, 224419 (2007).

  19. 19.

    & Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).

  20. 20.

    & Mesoscopic texture in manganites. Phys. Today 56, 25–30 (2003).

  21. 21.

    , & Electronically soft phases in manganites. Nature 433, 607–610 (2005).

  22. 22.

    Reemergent metal–insulator transitions in manganites exposed with spatial confinement. Phys. Rev. Lett. 100, 247204 (2008).

  23. 23.

    , , & Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

  24. 24.

    , , , & Thermal and electronic transport properties and two-phase mixtures in La5/8–xPrxCa3/8MnO3. Phys. Rev. Lett. 84, 2961–2964 (2000).

  25. 25.

    , & Observation of magnetic domain structure in phase-separated manganites by Lorentz electron microscopy. J. Electron Microsc. 51, 225–229 (2002).

  26. 26.

    Observation of individual vortices trapped along columnar defects in high-temperature superconductors. Nature 412, 620–622 (2001).

  27. 27.

    , & Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004).

  28. 28.

    & Magnetic Domains (Springer-Verlag, 2000).

  29. 29.

    & Off-axis electron holographic mapping of magnetic domains in Nd2Fe14B. J. Appl. Phys. 83, 6414–6416 (1998).

  30. 30.

    , , & Magnetic anisotropy of thin film La0.7Ca0.3MnO3 on untwinned paramagnetic NdGaO3 (001). J. Appl. Phys. 89, 3388–3392 (2001).

  31. 31.

    et al. Unconventional ferromagnetic transition in La1–xCaxMnO3. Phys. Rev. Lett. 76, 4046–4049 (1996).

  32. 32.

    Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006).

  33. 33.

    & Change in microstructure near the R-phase transformation in Ti50Ni48Fe2 studied by in situ electron microscopy. Phil. Mag. Lett. 81, 631–638 (2001).

  34. 34.

    , & Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature 420, 797–800 (2002).

Download references

Acknowledgements

This work was supported by the research fund of Okinawa Institute of Science and Technology. The authors are indebted to K. Harada for preparing the video clips.

Author information

Author notes

    • J. J. Kim

    Present address: Samsung Electronics, Hwasung City 445-701, Korea

Affiliations

  1. Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0411, Japan

    • Y. Murakami
    • , H. Kasai
    • , J. J. Kim
    • , S. Mamishin
    • , D. Shindo
    •  & A. Tonomura
  2. IMRAM, Tohoku University, Sendai 980-8577, Japan

    • Y. Murakami
    •  & D. Shindo
  3. Advanced Research Laboratory, Hitachi, Hatoyama, Saitama 350-0395, Japan

    • H. Kasai
    •  & A. Tonomura
  4. Hitachi High-Technologies, Hitachinaka, Ibaraki 312-8504, Japan

    • S. Mamishin
  5. Department of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan

    • S. Mori
  6. Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan

    • A. Tonomura

Authors

  1. Search for Y. Murakami in:

  2. Search for H. Kasai in:

  3. Search for J. J. Kim in:

  4. Search for S. Mamishin in:

  5. Search for D. Shindo in:

  6. Search for S. Mori in:

  7. Search for A. Tonomura in:

Contributions

Y.M., H.K., D.S. and A.T. conceived and designed the experiments. Y.M., H.K., J.J.K., S. Mamishin and S. Mori performed the experiments. S. Mori contributed materials and Y.M. analysed the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Y. Murakami.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary information

    Supplementary movie 1

  2. 2.

    Supplementary information

    Supplementary movie 2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2009.342

Further reading