Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ferromagnetic domain nucleation and growth in colossal magnetoresistive manganite

Abstract

Colossal magnetoresistance is a dramatic decrease in resistivity caused by applied magnetic fields1,2,3,4, and has been the focus of much research because of its potential for magnetic data storage using materials such as manganites. Although extensive microscopy and theoretical studies5,6,7,8,9,10,11 have shown that colossal magnetoresistance involves competing insulating and ferromagnetic conductive phases, the mechanism underlying the effect remains unclear. Here, by directly observing magnetic domain walls and flux distributions using cryogenic Lorentz microscopy and electron holography12,13,14, we demonstrate that an applied magnetic field assists nucleation and growth of an ordered ferromagnetic phase. These results provide new insights into the evolution dynamics of complex domain structures at the nanoscale, and help to explain anomalous phase separation phenomena that are relevant for applications3,15,16,17,18,19. Our approach can also be used to determine magnetic parameters of nanoscale regions, such as magnetocrystalline anisotropy and exchange stiffness, without bulk magnetization results or neutron scattering data.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleation and growth of the FM phase on cooling.
Figure 2: Phase boundary of the FM phase and the CO regions in the mother phase.
Figure 3: Electron holography observation of the coalescence of FM domains that were independently produced in the mother phase.

Similar content being viewed by others

References

  1. Jin, S. et al. Thousand-fold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).

    Article  CAS  Google Scholar 

  2. Tokura, Y. et al. Giant magnetotransport phenomena in filling-controlled Kondo lattice system: La1–xSrxMnO3 . J. Phys. Soc. Jpn 63, 3931–3935 (1994).

    Article  CAS  Google Scholar 

  3. Tokura, Y. Colossal Magnetoresistive Oxides (Gordon and Breach Science Publishers, 2000).

    Google Scholar 

  4. Millis, A. J. Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147–150 (1998).

    Article  CAS  Google Scholar 

  5. Fäth, M. et al. Spatially inhomogeneous metal–insulator transition in doped manganites. Science 285, 1540–1542 (1999).

    Article  Google Scholar 

  6. Zhang, L., Israel, C., Biswas, A., Greene, R. L. & de Lozanne, A. Direct observation of percolation in a manganite thin film. Science 298, 805–807 (2002).

    Article  CAS  Google Scholar 

  7. Asaka, T. et al. Ferromagnetic domain structures and nanoclusters in Nd1/2Sr1/2MnO3 . Phys. Rev. Lett. 89, 207203 (2002).

    Article  CAS  Google Scholar 

  8. Murakami, Y., Yoo, J. H., Shindo, D., Atou, T. & Kikuchi, M. Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003).

    Article  CAS  Google Scholar 

  9. Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance (Springer-Verlag, 2003).

    Book  Google Scholar 

  10. Moreo, A., Yunoki, S. & Dagotto, E. Phase separation scenario for manganese oxides and related materials. Science 283, 2034–2040 (1999).

    Article  CAS  Google Scholar 

  11. Mayr, M. et al. Resistivity of mixed-phase manganites. Phys. Rev. Lett. 86, 135–138 (2001).

    Article  CAS  Google Scholar 

  12. De Graef, M. & Zhu, Y. Magnetic Imaging and its Applications to Materials (Academic Press, 2001).

    Google Scholar 

  13. Tonomura, A. Electron Holography (Springer-Verlag, 1999).

    Book  Google Scholar 

  14. McCartney, M. R. & Smith, D. J. Electron holography: phase imaging with nanometer resolution. Ann. Rev. Mater. Res. 37, 729–767 (2007).

    Article  CAS  Google Scholar 

  15. Sawano, F. et al. An organic thyristor. Nature 437, 522–524 (2005).

    Article  CAS  Google Scholar 

  16. Liu, S. Q., Wu, N. J. & Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).

    Article  CAS  Google Scholar 

  17. Wu, W. et al. Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet. Nature Mater. 5, 881–886 (2006).

    Article  CAS  Google Scholar 

  18. Marcano, N., Gómez Sal, J. C., Espeso, J. I., Fernández Barquín, L. & Paulsen, C. Cluster-glass percolative scenario in CeNi1–xCux studied by very low-temperature a.c. susceptibility and d.c. magnetization. Phys. Rev. B 76, 224419 (2007).

    Article  Google Scholar 

  19. Bokov, A. A. & Ye, Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).

    Article  CAS  Google Scholar 

  20. Mathur, N. & Littlewood, P. Mesoscopic texture in manganites. Phys. Today 56, 25–30 (2003).

    Article  CAS  Google Scholar 

  21. Milward, G. C., Calderón, M. J. & Littlewood, P. B. Electronically soft phases in manganites. Nature 433, 607–610 (2005).

    Article  CAS  Google Scholar 

  22. Ward, T. Z. et al. Reemergent metal–insulator transitions in manganites exposed with spatial confinement. Phys. Rev. Lett. 100, 247204 (2008).

    Article  CAS  Google Scholar 

  23. Uehara, M., Mori, S., Chen, C. H. & Cheong, S.-W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999).

    Article  CAS  Google Scholar 

  24. Kim, H. H., Uehara, M., Hess, C., Sharma, P. A. & Cheong, S.-W. Thermal and electronic transport properties and two-phase mixtures in La5/8–xPrxCa3/8MnO3 . Phys. Rev. Lett. 84, 2961–2964 (2000).

    Article  CAS  Google Scholar 

  25. Mori, S., Asaka, T. & Matsui, Y. Observation of magnetic domain structure in phase-separated manganites by Lorentz electron microscopy. J. Electron Microsc. 51, 225–229 (2002).

    Article  CAS  Google Scholar 

  26. Tonomura, A. et al. Observation of individual vortices trapped along columnar defects in high-temperature superconductors. Nature 412, 620–622 (2001).

    Article  CAS  Google Scholar 

  27. Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004).

    Article  CAS  Google Scholar 

  28. Hubert, A. & Schäfer, R. Magnetic Domains (Springer-Verlag, 2000).

    Google Scholar 

  29. McCartney, M. R. & Zhu, Y. Off-axis electron holographic mapping of magnetic domains in Nd2Fe14B. J. Appl. Phys. 83, 6414–6416 (1998).

    Article  CAS  Google Scholar 

  30. Mathur, N. D., Jo, M.-H., Evetts, J. E. & Blamire, M. G. Magnetic anisotropy of thin film La0.7Ca0.3MnO3 on untwinned paramagnetic NdGaO3 (001). J. Appl. Phys. 89, 3388–3392 (2001).

    Article  CAS  Google Scholar 

  31. Lynn, J. W. et al. Unconventional ferromagnetic transition in La1–xCaxMnO3 . Phys. Rev. Lett. 76, 4046–4049 (1996).

    Article  CAS  Google Scholar 

  32. Kainuma, R. et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006).

    Article  CAS  Google Scholar 

  33. Murakami, Y. & Shindo, D. Change in microstructure near the R-phase transformation in Ti50Ni48Fe2 studied by in situ electron microscopy. Phil. Mag. Lett. 81, 631–638 (2001).

    Article  CAS  Google Scholar 

  34. Loudon, J. C., Mathur, N. D. & Midgley, P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3 . Nature 420, 797–800 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research fund of Okinawa Institute of Science and Technology. The authors are indebted to K. Harada for preparing the video clips.

Author information

Authors and Affiliations

Authors

Contributions

Y.M., H.K., D.S. and A.T. conceived and designed the experiments. Y.M., H.K., J.J.K., S. Mamishin and S. Mori performed the experiments. S. Mori contributed materials and Y.M. analysed the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Y. Murakami.

Supplementary information

Supplementary information

Supplementary information (PDF 599 kb)

Supplementary information

Supplementary movie 1 (MOV 8804 kb)

Supplementary information

Supplementary movie 2 (MOV 8996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, Y., Kasai, H., Kim, J. et al. Ferromagnetic domain nucleation and growth in colossal magnetoresistive manganite. Nature Nanotech 5, 37–41 (2010). https://doi.org/10.1038/nnano.2009.342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing