Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A tunable phonon–exciton Fano system in bilayer graphene

Abstract

Fano resonances are features in absorption, scattering or transport spectra resulting from the interaction of discrete and continuum states. They have been observed in a variety of systems1,2,3,4,5,6. Here, we report a many-body Fano resonance in bilayer graphene that is continuously tunable by means of electrical gating. Discrete phonons and continuous exciton (electron–hole pair) transitions are coupled by electron–phonon interactions, yielding a new hybrid phonon–exciton excited state. It may also be possible to control the phonon–exciton coupling with an optical field. This tunable phonon–exciton system could allow novel applications such as phonon lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual-gate bilayer graphene as a tunable Fano system.
Figure 2: Infrared absorption spectra of the gate-tunable Fano resonance.
Figure 3: Fano parameters as a function of tunable bandgap in undoped bilayer graphene.

Similar content being viewed by others

References

  1. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  CAS  Google Scholar 

  2. Fano, U. & Rau, A. R. P. Atomic Collisions and Spectra (Academic Press, 1986).

    Google Scholar 

  3. Adair, R. K., Bockelman, C. K. & Peterson, R. E. Experimental corroboration of the theory of neutron resonance scattering. Phys. Rev. 76, 308 (1949).

    Article  CAS  Google Scholar 

  4. Cerdeira, F., Fjeldly, T. A. & Cardona, M. Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. 2. Optical modes. Phys. Rev. B 8, 4734–4745 (1973).

    Article  CAS  Google Scholar 

  5. Faist, J., Capasso, F., Sirtori, C., West, K. W. & Pfeiffer, L. N. Controlling the sign of quantum interference by tunnelling from quantum wells. Nature 390, 589–591 (1997).

    Article  CAS  Google Scholar 

  6. Gores, J. et al. Fano resonances in electronic transport through a single-electron transistor. Phys. Rev. B 62, 2188–2194 (2000).

    Article  CAS  Google Scholar 

  7. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  8. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  9. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  10. Yan, J., Zhang, Y. B., Kim, P. & Pinczuk, A. Electric field effect tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

    Article  Google Scholar 

  11. Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

    Article  CAS  Google Scholar 

  12. Yan, J., Henriksen, E. A., Kim, P. & Pinczuk, A. Observation of anomalous phonon softening in bilayer graphene. Phys. Rev. Lett. 101, 136804 (2008).

    Article  Google Scholar 

  13. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  CAS  Google Scholar 

  14. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  Google Scholar 

  15. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  CAS  Google Scholar 

  16. Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).

    Article  CAS  Google Scholar 

  17. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  18. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Article  Google Scholar 

  19. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  CAS  Google Scholar 

  20. Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  Google Scholar 

  21. Guinea, F., Neto, A. H. C. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  Google Scholar 

  22. Lu, C. L., Chang, C. P., Huang, Y. C., Chen, R. B. & Lin, M. L. Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Phys. Rev. B 73, 144427 (2006).

    Article  Google Scholar 

  23. Oostinga, J. B., Heersche, H. B., Liu, X. L., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008).

    Article  CAS  Google Scholar 

  24. Eklund, P. C. & Subbaswamy, K. R. Analysis of Breit–Wigner line-shapes in the Raman-spectra of graphite-intercalation compounds. Phys. Rev. B 20, 5157–5161 (1979).

    Article  CAS  Google Scholar 

  25. Wang, Z. H., Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Raman studies of electron–phonon interaction in Kxc70. Phys. Rev. B 48, 16881–16884 (1993).

    Article  CAS  Google Scholar 

  26. Rao, A. M., Eklund, P. C., Bandow, S., Thess, A. & Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257–259 (1997).

    Article  CAS  Google Scholar 

  27. Brown, S. D. M. et al. Origin of the Breit–Wigner–Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B 63, 155414 (2001).

    Article  Google Scholar 

  28. Ando, T. & Koshino, M. Field effects on optical phonons in bilayer graphene. J. Phys. Soc. Jpn 78, 034709 (2009).

    Article  Google Scholar 

  29. Malard, L. M., Elias, D. C., Alves, E. S. & Pimenta, M. A. Observation of distinct electron–phonon couplings in gated bilayer graphene. Phys. Rev. Lett. 101, 257401 (2008).

    Article  CAS  Google Scholar 

  30. Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. Phonon linewidths and electron–phonon coupling in graphite and nanotubes. Phys. Rev. B 73, 155426 (2006).

    Article  Google Scholar 

  31. Das, A. et al. Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009).

    Article  Google Scholar 

  32. Wallentowitz, S., Vogel, W., Siemers, I. & Toschek, P. E. Vibrational amplification by stimulated emission of radiation. Phys. Rev. A 54, 943–946 (1996).

    Article  CAS  Google Scholar 

  33. Liu, H. C. et al. Coupled electron–phonon modes in optically pumped resonant intersubband lasers. Phys. Rev. Lett. 90, 077402 (2003).

    Article  CAS  Google Scholar 

  34. Bargatin, I. & Roukes, M. L. Nanomechanical analog of a laser: amplification of mechanical oscillations by stimulated Zeeman transitions. Phys. Rev. Lett. 91, 138302 (2003).

    Article  Google Scholar 

  35. Kuzmenko, A. B. et al. Gate tunable infrared phonon anomalies in bilayer graphene. Phys. Rev. Lett. 103, 116804 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of California at Berkeley and the Office of Basic Energy Sciences, US Department of Energy under contract no. DE-AC03-76SF0098 (Materials Science Division) and contract no. DE-AC02-05CH11231 (Advanced Light Source). Y.Z. and F.W. acknowledge support from a Miller Fellowship and a Sloan Fellowship, respectively. T.T.T. is partially supported by the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

F.W. designed the experiment. T.T.T, Y.Z., B.G. and C.G. fabricated the sample. T.T.T., Y.Z., Z.H., M.C.M. and F.W. performed infrared spectroscopy measurements. C.H.P., S.G.L and F.W. carried out the calculations. T.T.T., Y.Z., C.H.P, A.Z., M.F.C., S.G.L, Y.R.S. and F.W. co-wrote the paper.

Corresponding author

Correspondence to Feng Wang.

Supplementary information

Supplementary information

Supplementary information (PDF 432 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, TT., Zhang, Y., Park, CH. et al. A tunable phonon–exciton Fano system in bilayer graphene. Nature Nanotech 5, 32–36 (2010). https://doi.org/10.1038/nnano.2009.334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing