Letter | Published:

Efficient narrow-band light emission from a single carbon nanotube p–n diode

Nature Nanotechnology volume 5, pages 2731 (2010) | Download Citation

Subjects

Abstract

Electrically driven light emission from carbon nanotubes1,2,3,4,5,6,7,8 could be used in nanoscale lasers9 and single-photon sources10, and has therefore been the focus of much research. However, high electric fields and currents have either been necessary for electroluminescence4,5,6,7,8, or have been an undesired side effect2,3, leading to high power requirements and low efficiencies. Furthermore, electroluminescent linewidths have been broad enough to obscure the contributions of individual optical transitions. Here, we report electrically induced light emission from individual carbon nanotube p–n diodes. A new level of control over electrical carrier injection is achieved, reducing power dissipation by a factor of up to 1,000, and resulting in zero threshold current, negligible self-heating and high carrier-to-photon conversion efficiencies. Moreover, the electroluminescent spectra are significantly narrower (35 meV) than in previous studies1,2,3,4,5,6,7,8, allowing the identification of emission from free and localized excitons.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

  2. 2.

    et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

  3. 3.

    et al. Hot carrier EL from a single carbon nanotube. Nano Lett. 4, 1063–1066 (2004).

  4. 4.

    et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

  5. 5.

    et al. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006).

  6. 6.

    et al. Electroluminescence from single-wall carbon nanotube network transistors. Nano Lett. 8, 2351–2355 (2008).

  7. 7.

    et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007).

  8. 8.

    et al. Electroluminescence from suspended and on-substrate metallic single-walled carbon nanotubes. Nano Lett. 9, 1747–1751 (2009).

  9. 9.

    Seeking the ultimate nanolaser. Science 314, 260–261 (2006).

  10. 10.

    , , & Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

  11. 11.

    , & Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 85, 145–147 (2004).

  12. 12.

    , & (eds) Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, 2008).

  13. 13.

    , , & Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

  14. 14.

    , & Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

  15. 15.

    , , & Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004).

  16. 16.

    et al. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. Phys. Rev. Lett. 95, 197401 (2005).

  17. 17.

    & Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes. Phys. Rev. Lett. 101, 057401 (2008).

  18. 18.

    , , & A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. Nature Nanotech. 3, 609–613 (2008).

  19. 19.

    et al. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001).

  20. 20.

    , & Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

  21. 21.

    et al. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. Nano Lett. 9, 2010–2014 (2009).

  22. 22.

    et al. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 99, 237402 (2007).

  23. 23.

    et al. Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton–exciton annihilation. Phys. Rev. Lett. 94, 157402 (2005).

  24. 24.

    et al. Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403 (2004).

  25. 25.

    et al. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 7, 3080–3085 (2007).

  26. 26.

    , , & Auger recombination of excitons in one-dimensional systems. Phys. Rev. B 73, 245424 (2006).

  27. 27.

    , , & Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors. Phys. Rev. B 68, 235418 (2003).

  28. 28.

    & Exciton ionization, Franz–Keldysh and Stark effects in carbon nanotubes. Nano Lett. 7, 609–613 (2007).

  29. 29.

    , , & Mechanism of exciton dephasing in a single carbon nanotube studied by photoluminescence spectroscopy. Appl. Phys. Lett. 94, 093109 (2009).

  30. 30.

    , , & Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

Download references

Acknowledgements

The authors would like to thank Z. Chen, M. Freitag, Y.-M. Lin, E. E. Mendez and F. Xia for helpful discussions, and B. A. Ek for technical assistance. T.M. acknowledges financial support by the Austrian Science Fund FWF (Erwin Schrödinger fellowship J2705-N16).

Author information

Author notes

    • Thomas Mueller
    •  & Megumi Kinoshita

    These authors contributed equally to this work

Affiliations

  1. IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA

    • Thomas Mueller
    • , Megumi Kinoshita
    • , Mathias Steiner
    • , Vasili Perebeinos
    • , Ageeth A. Bol
    • , Damon B. Farmer
    •  & Phaedon Avouris
  2. Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA

    • Megumi Kinoshita

Authors

  1. Search for Thomas Mueller in:

  2. Search for Megumi Kinoshita in:

  3. Search for Mathias Steiner in:

  4. Search for Vasili Perebeinos in:

  5. Search for Ageeth A. Bol in:

  6. Search for Damon B. Farmer in:

  7. Search for Phaedon Avouris in:

Contributions

T.M. and M.K. were responsible for the experimental work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Thomas Mueller or Phaedon Avouris.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2009.319

Further reading