Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient narrow-band light emission from a single carbon nanotube p–n diode


Electrically driven light emission from carbon nanotubes1,2,3,4,5,6,7,8 could be used in nanoscale lasers9 and single-photon sources10, and has therefore been the focus of much research. However, high electric fields and currents have either been necessary for electroluminescence4,5,6,7,8, or have been an undesired side effect2,3, leading to high power requirements and low efficiencies. Furthermore, electroluminescent linewidths have been broad enough to obscure the contributions of individual optical transitions. Here, we report electrically induced light emission from individual carbon nanotube p–n diodes. A new level of control over electrical carrier injection is achieved, reducing power dissipation by a factor of up to 1,000, and resulting in zero threshold current, negligible self-heating and high carrier-to-photon conversion efficiencies. Moreover, the electroluminescent spectra are significantly narrower (35 meV) than in previous studies1,2,3,4,5,6,7,8, allowing the identification of emission from free and localized excitons.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure and electronic characteristics.
Figure 2: Identification of the light emission mechanism.
Figure 3: Electroluminescence spectra.
Figure 4: Comparison between ambipolar and unipolar light emission.


  1. Avouris, Ph., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

    Article  CAS  Google Scholar 

  2. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  CAS  Google Scholar 

  3. Freitag, M. et al. Hot carrier EL from a single carbon nanotube. Nano Lett. 4, 1063–1066 (2004).

    Article  CAS  Google Scholar 

  4. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    Article  CAS  Google Scholar 

  5. Marty, L. et al. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006).

    Article  CAS  Google Scholar 

  6. Adam, E. et al. Electroluminescence from single-wall carbon nanotube network transistors. Nano Lett. 8, 2351–2355 (2008).

    Article  CAS  Google Scholar 

  7. Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007).

    Article  CAS  Google Scholar 

  8. Xie, L. et al. Electroluminescence from suspended and on-substrate metallic single-walled carbon nanotubes. Nano Lett. 9, 1747–1751 (2009).

    Article  CAS  Google Scholar 

  9. Noda, S. Seeking the ultimate nanolaser. Science 314, 260–261 (2006).

    Article  CAS  Google Scholar 

  10. Högele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  Google Scholar 

  11. Lee, J. U., Gipp, P. P. & Heller, C. M. Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 85, 145–147 (2004).

    Article  CAS  Google Scholar 

  12. Jorio, A., Dresselhaus, M. S. & Dresselhaus, G. (eds) Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, 2008).

    Book  Google Scholar 

  13. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    Article  Google Scholar 

  14. Perebeinos, V., Tersoff, T. & Avouris, Ph. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

    Article  CAS  Google Scholar 

  15. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004).

    Article  Google Scholar 

  16. Hagen, A. et al. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. Phys. Rev. Lett. 95, 197401 (2005).

    Article  Google Scholar 

  17. Perebeinos, V. & Avouris, Ph. Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes. Phys. Rev. Lett. 101, 057401 (2008).

    Article  Google Scholar 

  18. Xia, F., Steiner, M., Lin, Y. & Avouris, Ph. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. Nature Nanotech. 3, 609–613 (2008).

    Article  CAS  Google Scholar 

  19. Jorio, A. et al. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001).

    Article  CAS  Google Scholar 

  20. Perebeinos, V., Tersoff, T. & Avouris, Ph. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

    Article  Google Scholar 

  21. Harutyunyan, H. et al. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. Nano Lett. 9, 2010–2014 (2009).

    Article  CAS  Google Scholar 

  22. Kiowski, O. et al. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 99, 237402 (2007).

    Article  Google Scholar 

  23. Ma, Y. et al. Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton–exciton annihilation. Phys. Rev. Lett. 94, 157402 (2005).

    Article  Google Scholar 

  24. Wang, F. et al. Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403 (2004).

    Article  Google Scholar 

  25. Tsyboulski, D. A. et al. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 7, 3080–3085 (2007).

    Article  CAS  Google Scholar 

  26. Wang, F., Wu, Y., Hybertsen, M. S. & Heinz, T. F. Auger recombination of excitons in one-dimensional systems. Phys. Rev. B 73, 245424 (2006).

    Article  Google Scholar 

  27. Heinze, S., Radosavljevic, M., Tersoff, J. & Avouris Ph. Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors. Phys. Rev. B 68, 235418 (2003).

    Article  Google Scholar 

  28. Perebeinos, V. & Avouris, Ph. Exciton ionization, Franz–Keldysh and Stark effects in carbon nanotubes. Nano Lett. 7, 609–613 (2007).

    Article  CAS  Google Scholar 

  29. Yoshikawa, K., Matsunaga, R., Matsuda, K. & Kanemitsu, Y. Mechanism of exciton dephasing in a single carbon nanotube studied by photoluminescence spectroscopy. Appl. Phys. Lett. 94, 093109 (2009).

    Article  Google Scholar 

  30. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

    Article  CAS  Google Scholar 

Download references


The authors would like to thank Z. Chen, M. Freitag, Y.-M. Lin, E. E. Mendez and F. Xia for helpful discussions, and B. A. Ek for technical assistance. T.M. acknowledges financial support by the Austrian Science Fund FWF (Erwin Schrödinger fellowship J2705-N16).

Author information

Authors and Affiliations



T.M. and M.K. were responsible for the experimental work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Thomas Mueller or Phaedon Avouris.

Supplementary information

Supplementary information

Supplementary information (PDF 1125 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mueller, T., Kinoshita, M., Steiner, M. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nature Nanotech 5, 27–31 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research