Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-crystalline kinked semiconductor nanowire superstructures

Abstract

The ability to control and modulate the composition1,2,3,4, doping1,3,4,5, crystal structure6,7,8 and morphology9,10 of semiconductor nanowires during the synthesis process has allowed researchers to explore various applications of nanowires11,12,13,14,15. However, despite advances in nanowire synthesis, progress towards the ab initio design and growth of hierarchical nanostructures has been limited. Here, we demonstrate a ‘nanotectonic’ approach that provides iterative control over the nucleation and growth of nanowires, and use it to grow kinked or zigzag nanowires in which the straight sections are separated by triangular joints. Moreover, the lengths of the straight sections can be controlled and the growth direction remains coherent along the nanowire. We also grow dopant-modulated structures in which specific device functions, including p–n diodes and field-effect transistors, can be precisely localized at the kinked junctions in the nanowires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and controlled synthesis of multiply kinked nanowires.
Figure 2: Crystallographic structure of kinked silicon nanowires.
Figure 3: Mechanistic studies of kinked nanowire growth.
Figure 4: Generality of kinked nanowire synthesis.
Figure 5: Topologically defined nanoelectronic devices.

Similar content being viewed by others

References

  1. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    Article  CAS  Google Scholar 

  2. Bjork, M. T. et al. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058–1060 (2002).

    Article  CAS  Google Scholar 

  3. Lauhon, L. J., Gudiksen, M. S., Wang, D. L. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  CAS  Google Scholar 

  4. Qian, F., Li, Y., Gradečak, S., Wang, D. L., Barrelet, C. J. & Lieber, C. M. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004).

    Article  CAS  Google Scholar 

  5. Yang, C., Zhong, Z. H. & Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310, 1304–1307 (2005).

    Article  CAS  Google Scholar 

  6. Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

    Article  CAS  Google Scholar 

  7. Caroff, P. et al. Controlled polytypic and twin-plane superlattices in iii–v nanowires. Nature Nanotech 4, 50–55 (2009).

    Article  CAS  Google Scholar 

  8. Davidson, F. M., Lee, D. C., Fanfair, D. D. & Korgel B. A. Lamellar twinning in semiconductor nanowires. J. Phys. Chem. C 111, 2929–2935 (2007).

    Article  CAS  Google Scholar 

  9. Ross, F. M., Tersoff, J. & Reuter, M. C. Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005).

    Article  CAS  Google Scholar 

  10. Gao, P. X. et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005).

    Article  CAS  Google Scholar 

  11. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  12. Sirbuly, D. J., Law, M., Yan, H. Q. & Yang, P. D. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109, 15190–15213 (2005).

    Article  CAS  Google Scholar 

  13. Patolsky, F., Timko, B. P., Zheng, G. & Lieber, C. M. Nanowire-based nanoelectronic devices in the life sciences. MRS Bull. 32, 142–149 (2007).

    Article  CAS  Google Scholar 

  14. Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 7127, 519–522 (2007).

    Article  Google Scholar 

  15. McAlpine, M. C., Ahmad, H., Wang, D. W. & Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Mater. 6, 379–384 (2007).

    Article  CAS  Google Scholar 

  16. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  17. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  18. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    Article  CAS  Google Scholar 

  19. Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).

    Article  CAS  Google Scholar 

  20. Lugstein, A. et al. Pressure-induced orientation control of the growth of epitaxial silicon nanowires. Nano Lett. 8, 2310–2314 (2008).

    Article  CAS  Google Scholar 

  21. Dick, K. A. et al. The morphology of axial and branched nanowire heterostructures. Nano Lett. 7, 1817–1822 (2007).

    Article  CAS  Google Scholar 

  22. Kodambaka, S., Tersoff, J., Reuter, M. C. & Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 316, 729–732 (2007).

    Article  CAS  Google Scholar 

  23. Kim, B. J. et al. Kinetics of individual nucleation events observed in nanoscale vapor–liquid–solid growth. Science 322, 1070–1073 (2008).

    Article  CAS  Google Scholar 

  24. Wacaser, B. A. et al. Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21, 153–165 (2009).

    Article  CAS  Google Scholar 

  25. Jaccodine, R. J. Surface energy of germanium and silicon. J. Electrochem. Soc. 110, 524–527 (1963).

    Article  CAS  Google Scholar 

  26. Pan, L., Lew, K.-K., Redwing, J. M. & Dickey, E. C. Stranski–Krastanow growth of germanium on silicon nanowires. Nano Lett. 5, 1081–1085 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y. J. Dong, X. C. Jiang and Q. Qing for help with experiments. C.M.L. acknowledges support from a National Institutes of Health Director's Pioneer Award, a McKnight Foundation Neuroscience Award and a contract from MITRE Corporation. T.J.K acknowledges support from the National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

B.T. and C.M.L. designed the experiments. B.T., P.X. and T.J.K. performed experiments and analyses. B.T. and C.M.L. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Charles M. Lieber.

Supplementary information

Supplementary information

Supplementary information (PDF 537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, B., Xie, P., Kempa, T. et al. Single-crystalline kinked semiconductor nanowire superstructures. Nature Nanotech 4, 824–829 (2009). https://doi.org/10.1038/nnano.2009.304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing