Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles


Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(d,l-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Immediate CAP restoration in compression-injured spinal cords after treatment with mPEG–PDLLA di-block copolymer micelles.
Figure 2: Calcium influx into axons.
Figure 3: Efficiency of CAP restoration depends on micelle structure and concentration.
Figure 4: Recovery of locomotor function in rats after compression injury.
Figure 5: Lesion volume and immunoreactivity analysis of rat tissue.
Figure 6: Toxicity analysis.


  1. Thuret, S., Moon, L. D. F. & Gage, F. H. Therapeutic interventions after spinal cord injury. Nature Rev. Neurosci. 7, 628–643 (2006).

    Article  CAS  Google Scholar 

  2. Bradbury, E. J. & McMahon, S. B. Opinion—spinal cord repair strategies: why do they work? Nature Rev. Neurosci. 7, 644–653 (2006).

    Article  CAS  Google Scholar 

  3. Young, W. Role of calcium in central-nervous-system injuries. J. Neurotrauma 9, S9–S25 (1992).

    Google Scholar 

  4. Klussmann, S. & Martin-Villalba, A. Molecular targets in spinal cord injury. J. Mol. Med. 83, 657–671 (2005).

    Article  CAS  Google Scholar 

  5. Baptiste, D. C. & Fehlings, M. G. Pharmacological approaches to repair the injured spinal cord. J. Neurotrauma 23, 318–334 (2006).

    Article  Google Scholar 

  6. Krause, T. L. & Bittner, G. D. Rapid morphological fusion of severed myelinated axons by polyethylene-glycol. Proc. Natl Acad. Sci. USA 87, 1471–1475 (1990).

    Article  CAS  Google Scholar 

  7. Lee, R. C., River, L. P., Pan, F. S., Ji, L. & Wollmann, R. L. Surfactant-induced sealing of electropermeabilized skeletal-muscle membranes in vivo. Proc. Natl Acad. Sci. USA 89, 4524–4528 (1992).

    Article  CAS  Google Scholar 

  8. Shi, R., Borgens, R. B. & Blight, A. R. Functional reconnection of severed mammalian spinal cord axons with polyethylene glycol. J. Neurotrauma 16, 727–738 (1999).

    Article  CAS  Google Scholar 

  9. Borgens, R. B. & Shi, R. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J. 14, 27–35 (2000).

    Article  CAS  Google Scholar 

  10. Borgens, R. B. & Bohnert, D. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol. J. Neurosci. Res. 66, 1179–1186 (2001).

    Article  CAS  Google Scholar 

  11. Laverty, P. H. et al. A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. J. Neurotrauma 21, 1767–1777 (2004).

    Article  Google Scholar 

  12. Borgens, R. B., Bohnert, D., Duerstock, B., Spomar, D. & Lee, R. C. Subcutaneous tri-block copolymer produces recovery from spinal cord injury. J. Neurosci. Res. 76, 141–154 (2004).

    Article  CAS  Google Scholar 

  13. Cho, Y., Shi, R., Borgens, R. & Ivanisevic, A. Repairing the damaged spinal cord and brain with nanomedicine. Small 4, 1676–1681 (2008).

    Article  CAS  Google Scholar 

  14. Luo, J., Borgens, R. & Shi, R. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J. Neurochem. 83, 471–480 (2002).

    Article  CAS  Google Scholar 

  15. Luo, J., Borgens, R. & Shi, R. Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury. J. Neurotrauma 21, 994–1007 (2004).

    Article  Google Scholar 

  16. Ditor, D. S. et al. Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat. J. Neurosci. Res. 85, 1458–1467 (2007).

    Article  CAS  Google Scholar 

  17. Liu, J. B., Zeng, F. Q. & Allen, C. In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur. J. Pharm. Biopharm. 65, 309–319 (2007).

    Article  CAS  Google Scholar 

  18. Burt, H. M., Zhang, X., Toleikis, P., Embree, L. & Hunter, W. L. Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids Surf. B Biointerfaces 16, 161–171 (1999).

    Article  CAS  Google Scholar 

  19. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    Article  CAS  Google Scholar 

  20. Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2, 347–360 (2003).

    Article  CAS  Google Scholar 

  21. Lentz, B. R. Polymer-induced membrane-fusion—potential mechanism and relation to cell-fusion events. Chem. Phys. Lipids 73, 91–106 (1994).

    Article  CAS  Google Scholar 

  22. Wang, H. F., Fu, Y., Zickmund, P., Shi, R. & Cheng, J. X. Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys. J. 89, 581–591 (2005).

    Article  CAS  Google Scholar 

  23. Basso, D. M., Beattie, M. S. & Bresnahan, J. C. A sensitive and reliable locomotor rating-scale for open-field testing in rats. J. Neurotrauma 12, 1–21 (1995).

    Article  CAS  Google Scholar 

  24. Letchford, K. & Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65, 259–269 (2007).

    Article  CAS  Google Scholar 

  25. Chen, H. et al. Fast release of lipophilic agents from circulating PEG–PDLLA micelles revealed by in vivo Forster resonance energy transfer imaging. Langmuir 24, 5213–5217 (2008).

    Article  CAS  Google Scholar 

  26. Savic, R., Azzam, T., Eisenberg, A. & Maysinger, D. Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir 22, 3570–3578 (2006).

    Article  CAS  Google Scholar 

  27. Liggins, R. T. & Burt, H. M. Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv. Drug Deliv. Rev. 54, 191–202 (2002).

    Article  CAS  Google Scholar 

  28. Hausmann, O. N., Fouad, K., Wallimann, T. & Schwab, M. E. Protective effects of oral creatine supplementation on spinal cord injury in rats. Spinal Cord 40, 449–456 (2002).

    Article  CAS  Google Scholar 

  29. Chvatal, S. A., Kim, Y. T., Bratt-Leal, A. M., Lee, H. J. & Bellamkonda, R. V. Spatial distribution and acute anti-inflammatory effects of methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 29, 1967–1975 (2008).

    Article  CAS  Google Scholar 

Download references


The authors cordially thank W. S. Shim for preparation of mPEG–PDLLA di-block copolymers, G. Leung for isolation of spinal cord white matter strips from guinea pigs, J. Li for fabrication of the CAP recording chamber, K. Cheng and H. Lou for help in immunostaining and image analysis, Y. Zhang for histological examination and intracerebroventricular injection of dextran–FITC, X.-M. Xu and X. Wang for instructions on immunostaining, D. Bohnert for training of survival surgery, and C. Dowell, M. Bible, G. Brock and A. Peterson for help in blood draw. The work was supported by a Showalter Trust grant from Purdue University, an Indiana Spinal Cord and Brain Injury Research Fund from the State of Indiana, and partially supported by a fund from State of Indiana (HB 1444) to R.B.B. and R01 EB7243 to J.X.C.

Author information

Authors and Affiliations



J.X.C., R.S., R.B.B. and K.P. equally contributed to the concept, experimental design, materials, equipment and conduct of the study. Y.S., S.K. and T.B.H. performed the experiments. Y.S. analyzed the data. Y.S. and J.X.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ji-Xin Cheng.

Supplementary information

Supplementary information

Supplementary information (PDF 2632 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shi, Y., Kim, S., Huff, T. et al. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nature Nanotech 5, 80–87 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research