Subjects

Abstract

Translating the unique characteristics of individual single-walled carbon nanotubes into macroscopic materials such as fibres and sheets has been hindered by ineffective assembly. Fluid-phase assembly is particularly attractive, but the ability to dissolve nanotubes in solvents has eluded researchers for over a decade. Here, we show that single-walled nanotubes form true thermodynamic solutions in superacids, and report the full phase diagram, allowing the rational design of fluid-phase assembly processes. Single-walled nanotubes dissolve spontaneously in chlorosulphonic acid at weight concentrations of up to 0.5wt%, 1,000 times higher than previously reported in other acids. At higher concentrations, they form liquid-crystal phases that can be readily processed into fibres and sheets of controlled morphology. These results lay the foundation for bottom-up assembly of nanotubes and nanorods into functional materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Functional nanowires. MRS Bull. 32, 99–108 (2007).

  2. 2.

    , & Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotech. 2, 372–377 (2007).

  3. 3.

    Materials science—putting a new spin on carbon nanotubes. Science 290, 1310–1311 (2000).

  4. 4.

    & Materials science—making strong fibers. Science 319, 908–909 (2008).

  5. 5.

    et al. Super-tough carbon-nanotube fibres. Nature 423, 703 (2003).

  6. 6.

    , & Self-assembly of single-walled carbon nanotubes into a sheet by drop drying. Adv. Mater. 18, 29–34 (2006).

  7. 7.

    et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447–1450 (2004).

  8. 8.

    , , & Self-organization of carbon nanotubes in evaporating droplets. J. Phys. Chem. B 110, 13926–13930 (2006).

  9. 9.

    et al. Single-wall carbon nanotube films. Chem. Mater. 15, 175–178 (2003).

  10. 10.

    et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

  11. 11.

    , , & Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 4, 1217–1222 (2008).

  12. 12.

    , , , & Isotropic-liquid crystalline phase diagram of a CdSe nanorod solution. J. Chem. Phys. 120, 1149–1152 (2004).

  13. 13.

    et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

  14. 14.

    , & Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 11158–11159 (2004).

  15. 15.

    , , , & Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).

  16. 16.

    et al. Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 20, 1876–1881 (2008).

  17. 17.

    & Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules 38, 6181–6188 (2005).

  18. 18.

    , & Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 6, 568–572 (2006).

  19. 19.

    et al. Phase behavior and rheology of SWNTs in superacids. Macromolecules 37, 154–160 (2004).

  20. 20.

    et al. Liquid crystals of DNA-stabilized carbon nanotubes. Adv. Mater. 17, 1673–1676 (2005).

  21. 21.

    et al. Nematic nanotube gels. Phys. Rev. Lett. 92, 088303 (2004).

  22. 22.

    et al. Dissolution of pristine single-walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108, 8794–8798 (2004).

  23. 23.

    et al. Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J. Am. Chem. Soc. 128, 591–595 (2006).

  24. 24.

    , , & Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. J. Chem. Phys. 131, 084901 (2009).

  25. 25.

    Phase equilibria in solutions of rod-like particles. Proc. R. Soc. London A 234, 73–89 (1956).

  26. 26.

    in Liquid Crystallinity in Polymers (ed. Ciferri, A.) 97–129 (VCH Publishers, 1991).

  27. 27.

    The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

  28. 28.

    & Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity. Phys. Rev. E 67, 061702 (2003).

  29. 29.

    & Isotropic-nematic phase behavior of length-polydisperse hard rods. J. Chem. Phys. 119, 6868–6882 (2003).

  30. 30.

    Intermolecular and Surface Forces 2nd edn (Academic Press, 1992).

  31. 31.

    , & Interaction between charged anisotropic macromolecules: application to rod-like polyelectrolytes. J. Chem. Phys. 120, 3969–3982 (2004).

  32. 32.

    , , , & Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer dextran. Phys. Rev. E 69, 051702 (2004).

  33. 33.

    Liquid crystalline order in solutions of rigid-chain polymers. Adv. Polym. Sci. 59, 75–102 (1984).

  34. 34.

    et al. Nanoengineered carbon scaffolds for hydrogen storage. J. Am. Chem. Soc. 131, 723–728 (2009).

  35. 35.

    , , & Hierarchical pore structure and wetting properties of single-wall carbon nanotube fibers. Nano Lett. 3, 419–423 (2003).

Download references

Acknowledgements

The authors acknowledge the help of R. Duggal, S. Ramesh, L. Ericson, C. Lupu, E. Whitsitt, R. Pinnick, C. Kittrell, W.-F. Hwang, H. Schmidt, B. Yakobson, J. Tour, K. Winey, K. Strong and B. Maruyama. Funding was provided by the Office of Naval Research under grant no. N00014-01-1-0789, AFOSR grant no. FA9550-06-1-0207, AFRL agreements FA8650-07-2-5061 and 07-S568-0042-01-C1, NSF CAREER, USA-Israel Binational Science Foundation, and the Evans-Attwell Welch Postdoctoral Fellowship. Cryo-TEM imaging was performed at the Hannah and George Krumholz Laboratory for Advanced Microscopy, part of the Technion Project on Complex Liquids, Nanostructure and Macromolecules.

Author information

Author notes

    • Virginia A. Davis
    •  & Micah J. Green

    Present address: Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA (V.A.D.); Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA (M.J.G.)

    • A. Nicholas G. Parra-Vasquez
    • , Micah J. Green
    •  & Pradeep K. Rai

    These authors contributed equally to this work

    • Richard E. Smalley

    Deceased 28 October 2005

Affiliations

  1. Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, USA

    • Virginia A. Davis
    • , A. Nicholas G. Parra-Vasquez
    • , Micah J. Green
    • , Pradeep K. Rai
    • , Natnael Behabtu
    • , Valentin Prieto
    • , Richard D. Booker
    • , Hua Fan
    • , W. Wade Adams
    • , Robert H. Hauge
    • , Richard E. Smalley
    •  & Matteo Pasquali
  2. Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA

    • Virginia A. Davis
    • , A. Nicholas G. Parra-Vasquez
    • , Micah J. Green
    • , Pradeep K. Rai
    • , Natnael Behabtu
    • , Valentin Prieto
    •  & Matteo Pasquali
  3. Department of Chemistry, Rice University, Houston, Texas 77005, USA

    • Robert H. Hauge
    • , Richard E. Smalley
    •  & Matteo Pasquali
  4. Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

    • Judith Schmidt
    • , Ellina Kesselman
    • , Yachin Cohen
    •  & Yeshayahu Talmon
  5. Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA

    • Wei Zhou
    •  & John E. Fischer

Authors

  1. Search for Virginia A. Davis in:

  2. Search for A. Nicholas G. Parra-Vasquez in:

  3. Search for Micah J. Green in:

  4. Search for Pradeep K. Rai in:

  5. Search for Natnael Behabtu in:

  6. Search for Valentin Prieto in:

  7. Search for Richard D. Booker in:

  8. Search for Judith Schmidt in:

  9. Search for Ellina Kesselman in:

  10. Search for Wei Zhou in:

  11. Search for Hua Fan in:

  12. Search for W. Wade Adams in:

  13. Search for Robert H. Hauge in:

  14. Search for John E. Fischer in:

  15. Search for Yachin Cohen in:

  16. Search for Yeshayahu Talmon in:

  17. Search for Richard E. Smalley in:

  18. Search for Matteo Pasquali in:

Contributions

V.A.D., M.J.G., M.P., A.N.G.P.V. and N.B. analysed the data and co-wrote the paper. M.J.G. and M.P. performed theoretical analysis and modelling. V.A.D., A.N.G.P.V., M.J.G., P.K.R., N.B., V.P. and W.Z. performed phase boundary experiments and A.N.G.P.V., N.B., M.J.G., R.D.B. and H.F. performed fibre and film experiments, all with direction and analysis from W.W.A., R.H., J.F., R.E.S. and M.P. J.S., E.K. and A.N.G.P.V. performed cryo-TEM experiments with direction and analysis from Y.C., Y.T. and M.P. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Matteo Pasquali.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary information

    Supplementary information

  2. 2.

    Supplementary information

    Supplementary movie 1

  3. 3.

    Supplementary information

    Supplementary movie 2

  4. 4.

    Supplementary information

    Supplementary movie 3

Powerpoint files

  1. 1.

    Supplementary information

    Supplementary information

  2. 2.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2009.302

Further reading