Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-assembled arrays of peptide nanotubes by vapour deposition


The use of bionanostructures in real-world applications will require precise control over biomolecular self-assembly and the ability to scale up production of these materials1. A significant challenge is to control the formation of large, homogeneous arrays of bionanostructures on macroscopic surfaces2,3,4. Previously, bionanostructure formation has been based on the spontaneous growth of heterogenic populations in bulk solution1. Here, we demonstrate the self-assembly of large arrays of aromatic peptide nanotubes using vapour deposition methods. This approach allows the length and density of the nanotubes to be fine-tuned by carefully controlling the supply of the building blocks from the gas phase. Furthermore, we show that the nanotube arrays can be used to develop high-surface-area electrodes for energy storage applications, highly hydrophobic self-cleaning surfaces and microfluidic chips.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Proposed assembly mechanism for the formation of vertically aligned ADNTs.
Figure 2: Vapour deposition of vertically aligned ADNTs.
Figure 3: Ultracapacitors based on ADNT-coated electrodes.
Figure 4: Highly hydrophobic surfaces and microfluidic patterning.


  1. 1

    Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171–1178 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Modi, A., Koratkar, N., Lass, E., Wei, B. Q. & Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Zhong, Z. H., Wang, D. L., Cui, Y., Bockrath, M. W. & Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377–1379 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Aggeli, A. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Banerjee, I. A., Yu, L. & Matsui, H. Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation. Proc. Natl Acad. Sci. USA 100, 14678–14682 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Hazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324–327 (1993).

    CAS  Article  Google Scholar 

  8. 8

    Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptideamphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Mao, C. et al. Viral assembly of oriented quantum dot nanowires. Science 303, 213–217 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Vauthey, S., Santoso, S., Gong, H., Watson, N. & Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl Acad. Sci. USA 16, 5355–5360 (2002).

    Article  Google Scholar 

  11. 11

    Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Sedman, V. L., Adler-Abramovich, L., Allen, S., Gazit, E. & Tendler, S. J. Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J. Am. Chem. Soc. 128, 6903–6908 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Adler-Abramovich, L. et al. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 22, 1313–1320 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Kol, N. et al. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Niu, L., Chen, X., Allen, S. & Tendler, S. J. B. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir 23, 7443–7446 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Yemini, M., Reches, M., Rishpon, J. & Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 5, 183–186 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Song, Y. et al. Synthesis of peptide–nanotube platinum–nanoparticle composites. Chem. Commun. 9, 1044–1045 (2004).

    Article  Google Scholar 

  18. 18

    Reches, M. & Gazit, E. Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech. 1, 195–200 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Hill, R. J. A. et al. Alignment of aromatic peptide tubes in strong magnetic fields. Adv. Mater. 19, 4474–4479 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Adler-Abramovich, L. & Gazit, E. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. J. Pept. Sci. 14, 217–223 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Adler-Abramovich, L., Aronov, D., Gazit, E. & Rosenman, G. Patterned arrays of ordered peptide nanostructures. J. Nanosci. Nanotech. 9, 1701–1708 (2008).

    Article  Google Scholar 

  22. 22

    Fan, S. et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Reches, M. & Gazit, E. Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini capped diphenylalanine peptide analogues. Isr. J. Chem. 45, 363–371 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Gorbitz, C. H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's β-amyloid polypeptide. Chem. Commun. 2332–2334 (2006).

  25. 25

    An, K. H. et al. Supercapacitors using single-walled carbon nanotube electrodes. Adv. Mater. 13, 497–500 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000).

    Article  Google Scholar 

  27. 27

    Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Genzer, J. & Efimenko, K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22, 339–360 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Sopher, N. B., Abrams, Z. R., Reches, M., Gazit, E. & Hanein, Y. Integrating peptide nanotubes in micro-fabrication processes. J. Micromech. Microeng. 17, 2360–2365 (2007).

    CAS  Article  Google Scholar 

Download references


The authors would like to thank E. Wachtel for help with the XRD analysis, D. Shabat and R. Perry for help with HPLC analysis, N. Fishelson for helpful discussions regarding the electrochemistry results, E. Strauss for help with ToF-SIMS analysis, R. Persky and I. Ulanovsky for help with liquid chromatography-mass spectrometry (LC-MS) analysis, Z. Barkay for help with the SEM analysis, T. Mazor for graphical assistance, and L. Leiserowitz, Y. Feldman and members of the Gazit laboratory for helpful discussions. E.G. acknowledges the support of the DIP German-Israel Cooperation Program. L.A.A. gratefully acknowledges the support of the Colton Foundation.

Author information




L.A.A, D.A., E.G. and G.R. conceived and designed the experiments. L.A.A., D.A., P.B. and M.Y. planned and performed the experiments. L.A.A., D.A., E.G., G.R. and L.B. analysed the data. S.S. performed the energy minimization study. L.A.A., D.A., E.G. and G.R. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Gil Rosenman or Ehud Gazit.

Supplementary information

Supplementary information

Supplementary information (PDF 3103 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adler-Abramovich, L., Aronov, D., Beker, P. et al. Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotech 4, 849–854 (2009).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research