Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Programming the detection limits of biosensors through controlled nanostructuring

Abstract

Advances in materials chemistry offer a range of nanostructured shapes and textures for building new biosensors1,2,3,4,5,6,7,8,9,10. Previous reports have implied that controlling the properties of sensor substrates can improve detection sensitivities, but the evidence remains indirect11,12,13. Here we show that by nanostructuring the sensing electrodes, it is possible to create nucleic acid sensors that have a broad range of sensitivities and that are capable of rapid analysis. Only highly branched electrodes with fine structuring attained attomolar sensitivity. Nucleic acid probes immobilized on finely nanostructured electrodes appear more accessible and therefore complex more rapidly with target molecules in solution. By forming arrays of microelectrodes with different degrees of nanostructuring, we expanded the dynamic range of a sensor system from two to six orders of magnitude. The demonstration of an intimate link between nanoscale sensor structure and biodetection sensitivity will aid the development of high performance diagnostic tools for biology and medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Programmable NMEs.
Figure 2: Comparison of NMEs with diverse nanostructuring.
Figure 3: Electrocatalytic nucleic acid detection at NMEs.
Figure 4: Comparison of the detection limit and dynamic range of three probe-modified Pd NMEs with different levels of nanostructuring.
Figure 5: Hybridization kinetics observed for two different types of NMEs.

Similar content being viewed by others

References

  1. Aizawa, M. & Buriak, J. M. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template. J. Am. Chem. Soc. 128, 5877–5886 (2006).

    Article  CAS  Google Scholar 

  2. Chai, J., Wang, D., Fan, X. & Buriak, J. M. Assembly of aligned linear metallic patterns on silicon. Nature Nanotech. 2, 500–506 (2007).

    Article  Google Scholar 

  3. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    Article  CAS  Google Scholar 

  4. Henzie, J. et al. Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60, 147–165 (2009).

    Article  CAS  Google Scholar 

  5. Kline, T. R. et al. Template-grown metal nanowires. Inorg. Chem. 45, 7555–7565 (2006).

    Article  CAS  Google Scholar 

  6. LeMieux, M. C. et al. Self-sorted, aligned nanotube networks for thin-film transistors. Science 321, 101–104 (2008).

    Article  CAS  Google Scholar 

  7. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  8. Mirkovic, T. et al. Hinged nanorods made using a chemical approach to flexible nanostructures. Nature Nanotech. 2, 565–569 (2007).

    Article  CAS  Google Scholar 

  9. Nicewarner-Pena, S. R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    Article  CAS  Google Scholar 

  10. Zhu, J. et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2009).

    Article  Google Scholar 

  11. Gasparac, R. et al. Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. J. Am. Chem. Soc. 126, 12270–12271 (2004).

    Article  CAS  Google Scholar 

  12. Hahm, J. & Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51–54 (2004).

    Article  CAS  Google Scholar 

  13. Park, S. J., Taton, T. A. & Mirkin, C. A. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 (2002).

    Article  CAS  Google Scholar 

  14. Lahav, M., Weiss, E. A., Xu, Q. & Whitesides, G. M. Core-shell and segmented polymer-metal composite nanostructures. Nano Lett. 6, 2166–2171 (2006).

    Article  CAS  Google Scholar 

  15. Love, J. C. et al. Formation and structure of self-assembled monolayers of alkanethiolates on palladium. J. Am. Chem. Soc. 125, 2597–2609 (2003).

    Article  CAS  Google Scholar 

  16. LaVan, D. A., George, P. M. & Langer, R. Simple, three-dimensional microfabrication of electrodeposited structures. Angew. Chem. Int. Ed. 42, 1262–1265 (2003).

    Article  CAS  Google Scholar 

  17. Fang, Z. & Kelley, S. O. Direct electrocatalytic mRNA detection using PNA-nanowire sensors. Anal. Chem. 81, 612–617 (2009).

    Article  CAS  Google Scholar 

  18. Lapierre, M. A., O'Keefe, M., Taft, B. J. & Kelley, S. O. Electrocatalytic detection of pathogenic DNA sequences and antibiotic resistance markers. Anal. Chem. 75, 6327–6333 (2003).

    Article  CAS  Google Scholar 

  19. Lapierre-Devlin, M. A. et al. Amplified electrocatalysis at DNA-modified nanowires. Nano Lett. 5, 1051–1055 (2005).

    Article  CAS  Google Scholar 

  20. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  Google Scholar 

  21. Ratilainen, T. et al. Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry 39, 7781–7791 (2000).

    Article  CAS  Google Scholar 

  22. Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856 (2005).

    Article  CAS  Google Scholar 

  23. Munge, B., Liu, G. D., Collins, G. & Wang, J. Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal. Chem. 77, 4662–4666 (2005).

    Article  CAS  Google Scholar 

  24. Zhang, Y. C., Pothukuchy, A., Shin, W., Kim, Y. & Heller, A. Detection of similar to 103 copies of DNA by an electrochemical enzyme-amplified sandwich assay with ambient O-2 as the substrate. Anal. Chem. 76, 4093–4097 (2004).

    Article  CAS  Google Scholar 

  25. Möller, R., Powell, R. D., Hainfeld, J. F. & Fritzsche, W. Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA chips. Nano Lett. 5, 1475–1482 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Genome Canada, the Ontario Ministry of Innovation and Research, the Ontario Centres of Excellence, Ontario Institute for Cancer Research, Canada Foundation for Innovation, Canadian Institutes of Health Research, and NSERC for their support of this work. We also acknowledge X. Sun for his contributions to the optimization of electrodeposition conditions.

Author information

Authors and Affiliations

Authors

Contributions

L.S., Z.F., E.H.S. and S.O.K. conceived and designed the experiments; L.S. and Z.F. performed the experiments; L.S. and Z.F. analysed the data. All authors discussed the results and co-wrote and commented on the manuscript.

Corresponding authors

Correspondence to Edward H. Sargent or Shana O. Kelley.

Supplementary information

Supplementary information

Supplementary information (PDF 422 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleymani, L., Fang, Z., Sargent, E. et al. Programming the detection limits of biosensors through controlled nanostructuring. Nature Nanotech 4, 844–848 (2009). https://doi.org/10.1038/nnano.2009.276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing