Abstract
Quantum dots (QDs) have applications in optoelectronic devices1,2, quantum information processing3,4 and energy harvesting5,6. Although the droplet epitaxy fabrication method7,8,9 allows for a wide range of material combinations to be used, little is known about the growth mechanisms involved10,11. Here we apply direct X-ray methods12,13,14 to derive sub-ångström resolution maps of QDs crystallized from indium droplets exposed to antimony, as well as their interface with a GaAs (100) substrate. We find that the QDs form coherently15 and extend a few unit cells below the substrate surface. This facilitates a droplet–substrate exchange of atoms, resulting in core–shell structures that contain a surprisingly small amount of In. The work provides the first atomic-scale mapping of the interface between epitaxial QDs and a substrate, and establishes the usefulness of X-ray phasing techniques for this and similar systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Enable a Facile Size Re-distribution of MBE-Grown Ga-Droplets via In Situ Pulsed Laser Shooting
Nanoscale Research Letters Open Access 04 August 2021
-
Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites
Nature Communications Open Access 06 December 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Yoffe, A. D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001).
Borovitskaya, E. & Shur, M. S. Quantum dots. Sel. Top. Electr. Syst. 25 (2002).
Biolatti, E., Iotti, R. C., Zanardi, P. & Rossi, F. Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett. 85, 5647–5650 (2000).
Geller, M. et al. 106 years extrapolated hole storage time in GaSb/AlAs quantum dots, Appl. Phys. Lett. 91, 242109 (2007).
Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).
Robel, I., Subramanian, V. Kuno, M. & Kamat, P. V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006).
Koguchi, N., Ishige, K. & Takahashi, S. New selective molecular-beam-epitaxial growth method for direct formation of GaAs quantum dots. J. Vac. Sci. Technol. B 11, 787–790 (1993).
Shusterman, S., Paltiel, Y., Sher A., Ezersky & Rosenwaks, Y. High-density nanometer-scale InSb dots formation using droplet heteroepitaxial growth by MOVPE, J. Cryst. Growth 291, 363–369 (2006).
Sablon, K. A., Lee, J. H., Wang, Z., Shultz, J. H. & Salamo, G. J. Configuration control of quantum dot molecules by droplet epitaxy. Appl. Phys. Lett. 92, 203106 (2008).
Shusterman, S. et al. Nanoscale mapping of strain and composition in quantum dots using Kelvin probe force microscopy. Nano Lett. 7, 2089–2093 (2007).
Wang, Y. et al. Real-time X-ray studies of gallium nitride nanodot formation by droplet heteroepitaxy. J. Appl. Phys. 102, 073522 (2007).
Yacoby, Y. et al. Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs. Nature Mater. 1, 99–101 (2002).
Kumah, D. P. et al. Resonant coherent Bragg rod analysis of strained epitaxial heterostructures. Appl. Phys. Lett. 93, 081910 (2008).
Cionca, C. N. et al. Interfacial structure, bonding and composition of InAs and GaSb thin films determined using coherent Bragg rod analysis. Phys. Rev. B 75, 115306 (2007).
Eaglesham, D. J. & Cerullo, M. Dislocation-free Stranski-Krastanow growth of Ge on Si (100). Phys. Rev. Lett. 64, 1943–1946 (1990).
He, L. X., Bester G. & Zunger, A. Strain-induced interfacial hole localization in self-assembled quantum dots: Compressive InAs/GaAs versus tensile InAs/InSb. Phys. Rev. B 70, 235316 (2004).
Pryor, C. J. & Pistol, M. J. Band-edge diagrams for strained iii–v semiconductor quantum wells, wires, and dots. Phys. Rev. B 72, 205311 (2005).
Joe, Y. S., Ikeler, D. S., Cosby, R. M., Satanin, A. M. & Kim, C. S. Characteristics of transmission resonance in a quantum-dot superlattice. J. Appl. Phys. 88, 2704–2708 (2000).
Johansson, J. et al. Structural properties of (111)B-oriented iii-v nanowires. Nature Mater. 5, 574–580 (2006).
Wang, Zh. M., Liang, B. L., Sablon, K. A. & Salamo, G. J. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs (100). Appl. Phys. Lett. 90, 113120 (2007).
Koguchi, N. & Ishige, K. Growth of GaAs epitaxial microcrystals on an S-terminated GaAs substrate by successive irradiation of Ga and As molecular beams. Jpn. J. Appl. Phys. 32, 2052–2058 (1993).
Timm, R. et al. Structure of InAs/GaAs quantum dots grown with Sb surfactant. Physica E 32, 25–28 (2006).
Shusterman, S., Raizman A. & Paltiel Y. Narrow gap nano-dots grown in the heteroepitaxial droplets mode. Infrared Phys. Technol. (in the press).
Yacoby, Y. et al. Structural changes induced by metal electrode layers on ultrathin BaTiO3 films. Phys. Rev. B 77, 195426 (2008).
Molina, S. I. et al. High resolution electron microscopy of GaAs capped GaSb nanostructures. Appl. Phys. Lett. 94, 043114 (2009).
Fry, P. W. et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys. Rev. Lett. 84, 734–736 (2000).
Yacoby Y. et al. Direct structure determination of systems with two-dimensional periodicity. J. Phys. Condens. Mat. 12, 3929–3938 (2000).
Elser, V. Solution of the crystallographic phase problem by iterated projection. Acta Cryst. A 59, 201–209 (2003).
Stahn, J., Möhle, M. & Pietsch, U. Comparison of experimental and theoretical structure amplitudes and valence charge densities of GaAs. Acta Crystallographica B 54, 231–239 (1998).
Acknowledgements
The work was supported by the US National Science Foundation under Grant DMR-0606048. Synchrotron radiation facilities at the Advanced Photon Source were supported by DOE Contract No. DE-AC02-06CH11357. The authors are grateful to N. Husseini for useful discussions and comments.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the work.
Corresponding author
Supplementary information
Supplementary information
Supplementary information (PDF 413 kb)
Rights and permissions
About this article
Cite this article
Kumah, D., Shusterman, S., Paltiel, Y. et al. Atomic-scale mapping of quantum dots formed by droplet epitaxy. Nature Nanotech 4, 835–838 (2009). https://doi.org/10.1038/nnano.2009.271
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2009.271
This article is cited by
-
Enable a Facile Size Re-distribution of MBE-Grown Ga-Droplets via In Situ Pulsed Laser Shooting
Nanoscale Research Letters (2021)
-
Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites
Nature Communications (2018)
-
Picoscale materials engineering
Nature Reviews Materials (2017)
-
Morphology and growth of capped Ge/Si quantum dots
Journal of Nanoparticle Research (2013)
-
Influence of graphite oxide drying temperature on ultra-fast microwave synthesis of graphene
Journal of Materials Science: Materials in Electronics (2013)