Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams

Abstract

Correlated electron materials can undergo a variety of phase transitions, including superconductivity, the metal–insulator transition and colossal magnetoresistance1. Moreover, multiple physical phases or domains with dimensions of nanometres to micrometres can coexist in these materials at temperatures where a pure phase is expected2. Making use of the properties of correlated electron materials in device applications will require the ability to control domain structures and phase transitions in these materials. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO2. Here, we show that we can nucleate and manipulate ordered arrays of metallic and insulating domains along single-crystal beams of VO2 by continuously tuning the strain over a wide range of values. The Mott transition between a low-temperature insulating phase and a high-temperature metallic phase usually occurs at 341 K in VO2, but the active control of strain allows us to reduce this transition temperature to room temperature. In addition to device applications, the ability to control the phase structure of VO2 with strain could lead to a deeper understanding of the correlated electron materials in general.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and electrical characterization of VO2 beams.
Figure 2: Strain-induced metal–insulator transitions along VO2 beams.
Figure 3: Phase field modelling of domain formation in a bent VO2 beam.
Figure 4: Strain engineering domains in a VO2 beam.

Similar content being viewed by others

References

  1. Cox, P. A. (ed.) Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (Oxford Univ. Press, 1992).

    Google Scholar 

  2. Dagotto, E. (ed.) Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, 2002).

    Google Scholar 

  3. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    Article  CAS  Google Scholar 

  4. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  5. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  6. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  7. Locquet, J. P. et al. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456 (1998).

    Article  CAS  Google Scholar 

  8. Eyert, V. The metal–insulator transitions of VO2: a band theoretical approach. Ann. Phys. 11, 650–704 (2002).

    Article  CAS  Google Scholar 

  9. Marezio, M., McWhan, D. B., Remeika, J. P. & Dernier, P. D. Structural aspects of the metal–insulator transitions in Cr-doped VO2 . Phys. Rev. B 5, 2541–2551 (1972).

    Article  Google Scholar 

  10. Rakotoniaina, J. C. et al. The thermochromic vanadium dioxide: I. Role of stresses and substitution on switching properties. J. Solid State Chem. 103, 81–94 (1993).

    Article  CAS  Google Scholar 

  11. Biermann, S., Poteryaev, A., Lichtenstein, A. I. & Georges, A. Dynamical singlets and correlation-assisted Peierls transition in VO2 . Phys. Rev. Lett. 94, 026404 (2005).

    Article  CAS  Google Scholar 

  12. Cavalleri, A., Rini, M. & Schoenlein, R. W. Ultra-broadband femtosecond measurements of the photo-induced phase transition in VO2: from the mid-IR to the hard X-rays. J. Phys. Soc. Jpn 75, 011004 (2006).

    Article  Google Scholar 

  13. Wentzcovitch, R. M., Schulz, W. W. & Allen, P. B. VO2: Peierls or Mott–Hubbard? A view from band theory. Phys. Rev. Lett. 72, 3389–3392 (1994).

    Article  CAS  Google Scholar 

  14. Ladd, L. A. & Paul, W. Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature. Solid State Commun. 7, 425–428 (1969).

    Article  CAS  Google Scholar 

  15. Gu, Q., Falk, A., Wu, J., Ouyang, L. & Park, H. Current-driven phase oscillation and domain-wall propagation in WxV1-xO2 nanobeams. Nano Lett. 7, 363–366 (2007).

    Article  CAS  Google Scholar 

  16. Wu, J. et al. Strain-induced self organization of metal–insulator domains in single-crystalline VO2 nanobeams. Nano Lett. 6, 2313–2317 (2006).

    Article  CAS  Google Scholar 

  17. Wei, J., Wang, Z., Chen, W. & Cobden, D. H. New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams. Nature Nanotech. 4, 420–424 (2009).

    Article  CAS  Google Scholar 

  18. Roytburd, A. L. Thermodynamics of polydomain heterostructures. II. Effect of microstresses. J. Appl. Phys. 83, 239–245 (1998).

    Article  CAS  Google Scholar 

  19. Tsai, K.-Y., Chin, T.-S. & Shieh, H.-P. D. Effect of grain curvature on nano-indentation measurements of thin films. Jpn J. Appl. Phys. 43, 6268–6273 (2004).

    Article  CAS  Google Scholar 

  20. Berglund, C. N. & Guggenheim, H. J. Electronic properties of VO2 near the semiconductor–metal transition. Phys. Rev. 185, 1022–1033 (1969).

    Article  CAS  Google Scholar 

  21. Cook, O. A. High-temperature heat contents of V2O3, V2O4 and V2O5 . J. Am. Chem. Soc. 69, 331–333 (1964).

    Article  Google Scholar 

  22. Zhou, J. et al. Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008).

    Article  CAS  Google Scholar 

  23. Strelcov, E., Lilach, Y. & Kolmakov, A. Gas sensor based on metal–insulator transition in VO2 nanowire thermistor. Nano Lett. 9, 2322–2326 (2009).

    Article  CAS  Google Scholar 

  24. Khachaturyan, A. G. ed. Theory of Structural Transformation in Solids (John Wiley, 1983).

    Google Scholar 

  25. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    Article  CAS  Google Scholar 

  26. Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004).

    Article  CAS  Google Scholar 

  27. Burgy, J., Moreo, A. & Dagotto, E. Relevance of cooperative lattice effects and stress fields in phase-separation theories for CMR manganites. Phys. Rev. Lett. 92, 097202 (2004).

    Article  Google Scholar 

  28. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Article  CAS  Google Scholar 

  29. Dagotto, E. Open questions in CMR manganites, relevance of clustered states and analogies with other compounds including the cuprates. New J. Phys. 7, 67 (2005).

    Article  Google Scholar 

  30. Faeth, M. et al. Spatially inhomogeneous metal–insulator transition in doped manganites. Science 285, 1540–1542 (1999).

    Article  Google Scholar 

  31. Moreo, A., Yunoki, S. & Dagotto, E. Phase separation scenario for manganese oxides and related materials. Science 283, 2034–2040 (1999).

    Article  CAS  Google Scholar 

  32. Shenoy, V. B., Sarma, D. D. & Rao, C. N. R. Electronic phase separation in correlated oxides: the phenomenon, its present status and future prospects. ChemPhysChem. 7, 2053–2059 (2006).

    Article  CAS  Google Scholar 

  33. Lee, J. et al. Interplay of electron-lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ . Nature 442, 546–550 (2006).

    Article  CAS  Google Scholar 

  34. Guiton, B. S., Gu, Q., Prieto, A. L., Gudiksen, M. S. & Park, H. Single-crystalline vanadium dioxide nanowires with rectangular cross sections. J. Am. Chem. Soc. 127, 498–499 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (grant no. EEC-0425914) and in part by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory (LBNL; Department of Energy contract no. DE-AC02-05CH11231). Portions of this work were performed at the Molecular Foundry and the National Centre for Electron Microscopy, both at LBNL. J.C.G. and E.E. acknowledge funding by the Focus Center Research Program on Materials, Structures and Devices (FCRP/MSD).

Author information

Authors and Affiliations

Authors

Contributions

J.W. and J.C. conceived and planned the experiments. J.C. performed the experiments with assistance from W.F. E.E., V.S. and J.C.G. carried out the modelling. H.Z. performed the TEM. S.H., J.W.L.Y., D.R.K. and D.F.O. contributed to materials synthesis and analysis. J.C. and J.W. analysed the data and wrote the paper.

Corresponding author

Correspondence to J. Wu.

Supplementary information

Supplementary information

Supplementary information (PDF 481 kb)

Supplementary information

Supplementary movie 1 (MOV 2331 kb)

Supplementary information

Supplementary movie 2 (MOV 219 kb)

Supplementary information

Supplementary movie 3 (MOV 284 kb)

Supplementary information

Supplementary movie 4 (MOV 334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Ertekin, E., Srinivasan, V. et al. Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams. Nature Nanotech 4, 732–737 (2009). https://doi.org/10.1038/nnano.2009.266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing