Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective

Abstract

The regulation of engineered nanoparticles requires a widely agreed definition of such particles. Nanoparticles are routinely defined as particles with sizes between about 1 and 100 nm that show properties that are not found in bulk samples of the same material. Here we argue that evidence for novel size-dependent properties alone, rather than particle size, should be the primary criterion in any definition of nanoparticles when making decisions about their regulation for environmental, health and safety reasons. We review the size-dependent properties of a variety of inorganic nanoparticles and find that particles larger than about 30 nm do not in general show properties that would require regulatory scrutiny beyond that required for their bulk counterparts.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Below what size do nanoparticles show properties not seen in larger particles with the same chemical composition?
Figure 2: Size dependence of various physical properties of nanoparticles.
Figure 3: Size dependence of the mechanisms of arsenic adsorption at the surface of iron oxide particles.
Figure 4: Toxicity of silver nanoparticles.
Figure 5: A number of physicochemical mechanisms can occur at the surface of an inorganic nanoparticle.

References

  1. Académie des Sciences, Académie des Technologies. Nanosciences - Nanotechnologies. Science and Technology Report No. 18 (French Academy of Sciences, 2004); summary of recommendations (in English) available at <http://www.tinyurl.com/nqwdda>.

  2. The Royal Society and The Royal Academy of Engineering. Nanoscience and Nanotechnology: Opportunities and Uncertainties (The Royal Society, 2004); available at <http://www.nanotec.org.uk>.

  3. Hansen, S. F., Larsen, B. H., Olsen, S. I. & Baun, A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1, 243–250 (2007).

    CAS  Google Scholar 

  4. Nanoscale Science Engineering and Technology Subcommittee. The National Nanotechnology Initiative: Strategic Plan (US National Science and Technology Council, 2004); available at <http://www.nano.gov/NNI_Strategic_Plan_2004.pdf>.

  5. Donaldson, K., Stone, V., Tran, C. L., Kreyling, W. & Born, P. J. A. Nanotoxicology. Occup. Environ. Med. 61, 727–728 (2004).

    CAS  Google Scholar 

  6. Oberdörster, G., Oberdörster, E. & Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005).

    Google Scholar 

  7. Auffan, M. et al. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3, 161–171 (2009).

    CAS  Google Scholar 

  8. Carlson, C. et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112, 13608–13619 (2008).

    CAS  Google Scholar 

  9. Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006).

    CAS  Google Scholar 

  10. Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J. & Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 101, 239–253 (2008).

    CAS  Google Scholar 

  11. Billinge, S. J. L. & Levin, I. The problem with determining atomic structure at the nanoscale. Science 316, 561–565 (2007).

    CAS  Google Scholar 

  12. Bottero, J. Y., Rose, J. & Wiesner, M. R. Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr. Environ. Assess. Manag. 2, 391–395 (2006).

    CAS  Google Scholar 

  13. Emerich, D. F. & Thanos, C. G. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol. Eng. 23, 171–184 (2006).

    CAS  Google Scholar 

  14. Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).

    CAS  Google Scholar 

  15. Pereira de Abreu, D. A., Paseiro Losada, P., Angulo, I. & Cruz, J. M. Development of new polyolefin films with nanoclays for application in food packaging. Eur. Polym. J. 43, 2229–2243 (2007).

    CAS  Google Scholar 

  16. Zhang, W. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323–332 (2003).

    CAS  Google Scholar 

  17. Sahoo, S. K. & Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8, 1112–1120 (2003).

    CAS  Google Scholar 

  18. Kim, C. K. et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J. Am. Chem. Soc. 131, 1360–1361 (2009).

    CAS  Google Scholar 

  19. Xia, Y. Nanomaterials at work in biomedical research. Nature Mater. 7, 758–760 (2008).

    CAS  Google Scholar 

  20. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    CAS  Google Scholar 

  21. Wiesner, M. R., Lowry, G. V. & Alvarez, P. J. J. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006).

    CAS  Google Scholar 

  22. Lanone, S. & Boczkowski, J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr. Mol. Med. 6, 651–663 (2006).

    CAS  Google Scholar 

  23. Moore, M. N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 32, 967–976 (2006).

    CAS  Google Scholar 

  24. Fortner, J. D. et al. C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol. 39, 4307–4316 (2005).

    CAS  Google Scholar 

  25. Oberdörster, E. Manufactured nanomaterials (fullerene, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112, 1058–1062 (2004).

    Google Scholar 

  26. Auffan, M. et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity towards Escherichia Coli. Environ. Sci. Technol. 42, 6730–6735 (2008).

    CAS  Google Scholar 

  27. Auffan, M. et al. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ. Sci. Technol. 40, 4367–4373 (2006).

    CAS  Google Scholar 

  28. Thill, A. et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156 (2006).

    CAS  Google Scholar 

  29. Scheufele, D. A., Corley, E. A., Shih, T.-J., Dalrymple, K. E. & Ho, S. S. Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nature Nanotech. 4, 91–94 (2009).

    CAS  Google Scholar 

  30. Lin, K.-F., Cheng, H.-M., Hsu, H.-C., Lin, L.-J. & Hsieh, W.-F. Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem. Phys. Lett. 409, 208–211 (2005).

    CAS  Google Scholar 

  31. Moreels, I. et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, 6101–6106 (2007).

    CAS  Google Scholar 

  32. Norris, D. J. & Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 16338–16346 (1996).

    CAS  Google Scholar 

  33. Wang, Y. & Herron, N. Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B 42, 7253–7255 (1990).

    CAS  Google Scholar 

  34. Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G. & Allen, L. H. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102 (1996).

    CAS  Google Scholar 

  35. Tang, Z. X., Sorensen, C. M., Klabunde, K. J. & Hadjipanayis, G. C. Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 67, 3602–3605 (1991).

    CAS  Google Scholar 

  36. Jolivet, J. P. et al. Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J. Mater. Chem. 14, 3281–3288 (2004).

    CAS  Google Scholar 

  37. Lamber, R., Wetjen, S. & Jaeger, N. I. Size dependence of the lattice parameter of small palladium particles. Phys. Rev. B 51, 10968–10971 (1995).

    CAS  Google Scholar 

  38. Ayyub, P., Palkar, V. R., Chattopadhyay, S. & Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51, 6135–6138 (1995).

    CAS  Google Scholar 

  39. Banfield, J. F. & Navrotsky, A. (eds) Nanoparticles and the Environment (Mineralogical Society of America, 2001).

    Google Scholar 

  40. Brice-Profeta, S. et al. Magnetic order in γFe2O3 nanoparticles: a XMCD study. J. Magn. Magn. Mater. 288, 354–365 (2005).

    CAS  Google Scholar 

  41. Baudrin, E. et al. Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem. Commun. 9, 337–342 (2007).

    CAS  Google Scholar 

  42. Hwang, Y.-N., Park, S.-H. & Kim, D. Size-dependent surface phonon mode of CdSe quantum dots. Phys. Rev. B 59, 7285–7288 (1999).

    CAS  Google Scholar 

  43. Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996).

    CAS  Google Scholar 

  44. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    CAS  Google Scholar 

  45. Pottier, A. S. et al. Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem. 13, 877–882 (2003).

    CAS  Google Scholar 

  46. Chernyshev, A. P. Effect of nanoparticle size on the onset temperature of surface melting. Mater. Lett. 63, 1525–1527 (2009).

    CAS  Google Scholar 

  47. Zhang, M. et al. Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 10548–10557 (2000).

    CAS  Google Scholar 

  48. Sun, J. & Simon, S. L. The melting behavior of aluminium nanoparticles. Thermochim. Acta 463, 32–40 (2007).

    CAS  Google Scholar 

  49. Dormann, J. L., Fiorani, D. & Tronc, E. Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283–494 (1997).

    CAS  Google Scholar 

  50. Gangopadhyay, S. et al. Magnetic properties of ultrafine iron particles. Phys. Rev. B 45, 9778–9787 (1992).

    CAS  Google Scholar 

  51. Pastor, G. M., Dorantesdavila, J. & Bennemann, K. H. Size and structural dependence of the magnetic properties of small 3d-transition-metal clusters. Phys. Rev. B 40, 7642–7654 (1989).

    CAS  Google Scholar 

  52. Chen, Q. & Zhang, Z. J. Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites. Appl. Phys. Lett. 73, 3156–3158 (1998).

    CAS  Google Scholar 

  53. Selbach, S. M., Tybell, T., Einarsrud, M. A. & Grande, T. Size-dependent properties of multiferroic BiFeO3 manoparticles. Chem. Mater. 19, 6478–6484 (2007).

    CAS  Google Scholar 

  54. Shetty, S., Palkar, V. R. & Pinto, R. Size effect study in magnetoelectric BiFeO3 system. Pramana 58, 1027–1030 (2002).

    CAS  Google Scholar 

  55. Chattopadhyay, S., Ayyub, P., Palkar, V. R. & Multani, M. Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3 . Phys. Rev. B 52, 13177–13183 (1995).

    CAS  Google Scholar 

  56. Shih, W. Y., Shih, W.-H. & Aksay, I. A. Size dependence of the ferroelectric transition of small BaTiO3 particles: effect of depolarization. Phys. Rev. B 50, 15575–15585 (1994).

    CAS  Google Scholar 

  57. Rusanov, A. I. Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111–239 (2005).

    CAS  Google Scholar 

  58. Borm, P. et al. Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90, 23–32 (2006).

    CAS  Google Scholar 

  59. Fan, C., Chen, J., Chen, Y., Ji, J. & Teng, H. H. Relationship between solubility and solubility product: the roles of crystal sizes and crystallographic directions. Geochim. Cosmochim. Acta 70, 3820–3829 (2006).

    CAS  Google Scholar 

  60. Talapin, D. V., Rogach, A. L., Haase, M. & Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B 105, 12278–12285 (2001).

    CAS  Google Scholar 

  61. Rogach, A. L. et al. Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002).

    CAS  Google Scholar 

  62. McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).

    CAS  Google Scholar 

  63. Zhang, H. & Banfield, J. F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 . J. Phys. Chem. B 104, 3481–3487 (2000).

    CAS  Google Scholar 

  64. Ranade, M. R. et al. Energetics of nanocrystalline TiO2 . Proc. Natl Acad. Sci. USA 99, 6476–6481 (2002).

    CAS  Google Scholar 

  65. Gratton, S. E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    CAS  Google Scholar 

  66. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech. 3, 145–150 (2008).

    CAS  Google Scholar 

  67. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core-shell nanoparticles. Science 322, 932–934 (2008).

    CAS  Google Scholar 

  68. Auffan, M. et al. Enhanced adsorption of arsenic onto nano-maghemites: As(III) as a probe of the surface structure and heterogeneity. Langmuir 24, 3215–3222 (2008).

    CAS  Google Scholar 

  69. Hoyer, P. & Weller, H. Size-dependent redox potentials of quantized zinc oxide measured with an optically transparent thin layer electrode. Chem. Phys. Lett. 221, 379–384 (1994).

    CAS  Google Scholar 

  70. Yokoyama, A., Komiyama, H., Inoue, H., Masumoto, T. & Kimura, H. M. Hydrogenation of carbon monoxide by amorphous ribbons. J. Catalys. 68, 355–361 (1981).

    CAS  Google Scholar 

  71. Liu, Y., Choi, H., Dionysiou, D. & Lowry, G. V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chem. Mater. 17, 5315–5322 (2005).

    CAS  Google Scholar 

  72. Nurmi, J. T. et al. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry and kinetics. Environ. Sci. Technol. 39, 1221–1230 (2005).

    CAS  Google Scholar 

  73. Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S. & Lowry, G. V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 39, 1338–1345 (2005).

    CAS  Google Scholar 

  74. Jolivet, J. P. & Barron, A. R. in Environmental Nanotechnology — Applications and Impacts of Nano-materials (eds Wiesner, M. R. & Bottero, J. Y.) 29–103 (McGraw Hill, 2007).

    Google Scholar 

  75. Banus, E. D., Milt, V. G., Miro, E. E. & Ulla, M. A. Structured catalyst for the catalytic combustion of soot: Co, Ba, K/ZrO2 supported on Al2O3 foam. Appl. Catalys. A 362, 129–138 (2009).

    CAS  Google Scholar 

  76. Martinez, A., Prieto, G. & Rollan, J. Nanofibrous γ-Al2O3 as support for Co-based Fischer-Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance. J. Catalys. 263, 292–305 (2009).

    CAS  Google Scholar 

  77. Euzen, P. et al. in Handbook of Porous Materials (eds Schuth, F., Sing, K. S. W. & Weitkamp, J.) 1591–1677 (Wiley-VCH, 2002).

    Google Scholar 

  78. Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L. & Chan, C. K. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catalys. 192, 185–196 (2000).

    CAS  Google Scholar 

  79. Wang, C. C., Zhang, Z. & Ying, J. Y. Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct. Mater. 9, 583–586 (1997).

    CAS  Google Scholar 

  80. Almquist, C. B. & Biswas, P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J. Catalys. 212, 145–156 (2002).

    CAS  Google Scholar 

  81. Santra, A. K. & Goodman, D. W. Oxide-supported metal clusters: models for heterogeneous catalysts. J. Phys. Condens. Matter 15, R31–R62 (2003).

    CAS  Google Scholar 

  82. Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    CAS  Google Scholar 

  83. Haruta, M. Size- and support-dependency in the catalysis of gold. Catalys. Today 36, 153–166 (1997).

    CAS  Google Scholar 

  84. Sau, T. K., Pal, A. & Pal, T. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B 105, 9266–9272 (2001).

    CAS  Google Scholar 

  85. Cortie, M. B. & Van der Lingen, E. Catalytic gold nanoparticles. Mater. Forum 26, 1–14 (2002).

    CAS  Google Scholar 

  86. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

    CAS  Google Scholar 

  87. Miller, J. T. et al. The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J. Catalys. 240, 222–234 (2006).

    CAS  Google Scholar 

  88. Madden, A. S., Hochella, M. F. & Luxton, T. P. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2 sorption. Geochim. Cosmochim. Acta 70, 4095–4104 (2006).

    CAS  Google Scholar 

  89. Villiéras, F. et al. Surface heterogeneity of minerals. C. R. Geosci. 334, 597–609 (2002).

    Google Scholar 

  90. Yean, S. et al. Effect of magnetic particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20, 3255–3264 (2005).

    CAS  Google Scholar 

  91. Stumm, W. & Morgan, J. J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters 2nd edn (Wiley-Interscience, 1981).

    Google Scholar 

  92. Sigg, L., Behra, P. & Stumm, G. N. Chimie des Milieux Aquatiques, Chimie des Eaux Naturelles et des Interfaces dans l'Environnement (Dunod, 2000).

    Google Scholar 

  93. Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 319, 1635–1638 (2008).

    CAS  Google Scholar 

  94. Jolivet, J. P. & Tronc, E. Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4-γ-Fe2O3 particles in aqueous medium. J. Colloid Interface Sci. 125, 688–701 (1988).

    CAS  Google Scholar 

  95. Gurr, J.-R., Wang, A. S. S., Chen, C.-H. & Jan, K.-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66–73 (2005).

    CAS  Google Scholar 

  96. Warheit, D. B., Webb, T. R., Sayes, C. M., Colvin, V. L. & Reed, K. L. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227–236 (2006).

    CAS  Google Scholar 

  97. Hirakawa, K., Mori, M., Yoshida, M., Oikawa, S. & Kawanishi, S. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic. Res. 38, 439–447 (2004).

    CAS  Google Scholar 

  98. Sato, T. & Taya, M. Enhancement of phage inactivation using photocatalytic titanium dioxide particles with different crystalline structures. Biochem. Eng. J. 28, 303–308 (2006).

    CAS  Google Scholar 

  99. Jang, H. D., Kim, S.-K. & Kim, S.-J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141–147 (2001).

    CAS  Google Scholar 

  100. Braydich-Stolle, L. et al. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res. 11, 1361–1374 (2009).

    CAS  Google Scholar 

  101. Auffan, M., Rose, J., Wiesner, M. R. & Bottero, J. Y. Chemical stability of metallic nanoparticles: a parameter controlling their potential toxicity in vitro. Environ. Pollut. 157, 1127–1133 (2009).

    CAS  Google Scholar 

  102. Brunner, T. J. et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381 (2006).

    CAS  Google Scholar 

  103. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (US National Association of Corrosion Engineers, 1974).

    Google Scholar 

  104. Franklin, N. M. et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41, 8484–8490 (2007).

    CAS  Google Scholar 

  105. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).

    CAS  Google Scholar 

  106. Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005).

    CAS  Google Scholar 

  107. Wang, S. et al. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 463, 145–149 (2008).

    CAS  Google Scholar 

  108. Park, E. J., Choi, J., Park, Y. K. & Park, K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245, 90–100 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US National Science Foundation (NSF) and Environmental Protection Agency (EPA) under an NSF Cooperative Agreement (EF-0830093, Center for Environmental Implications of NanoTechnology). The French Atomic Energy Commission (CEA) and National Center for Scientific Research (CNRS) are acknowledged for their support and funding of the international Consortium for the Environmental Implications of Nanotechnology. This work has also been funded by the French National Program ANR and ACI-FNS ECCO supported by the French National Institute for Earth Sciences and Astronomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Wiesner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Auffan, M., Rose, J., Bottero, JY. et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotech 4, 634–641 (2009). https://doi.org/10.1038/nnano.2009.242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.242

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research