Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Promises, facts and challenges for carbon nanotubes in imaging and therapeutics

Abstract

The use of carbon nanotubes in medicine is now at the crossroads between a proof-of-principle concept and an established preclinical candidate for a variety of therapeutic and diagnostic applications. Progress towards clinical trials will depend on the outcomes of efficacy and toxicology studies, which will provide the necessary risk-to-benefit assessments for carbon-nanotube-based materials. Here we focus on carbon nanotubes that have been studied in preclinical animal models, and draw attention to the promises, facts and challenges of these materials as they transition from research to the clinical phase. We address common questions regarding the use of carbon nanotubes in disease imaging and therapy, and highlight the opportunities and challenges ahead.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Types of carbon nanotube studied in vivo for imaging and therapy.

References

  1. Prato, M., Kostarelos, K. & Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41, 60–68 (2008).

    Article  CAS  Google Scholar 

  2. Boczkowski, J. & Lanone, S. Potential uses of carbon nanotubes in the medical field: how worried should patients be? Nanomedicine 2, 407–410 (2007).

    Article  Google Scholar 

  3. Itkis, M. E. et al. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 3439–3448 (2005).

    Article  CAS  Google Scholar 

  4. Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).

    Article  CAS  Google Scholar 

  5. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  6. Jorio, A., Dresselhaus, G. & Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer-Verlag, 2008).

    Book  Google Scholar 

  7. Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    Article  CAS  Google Scholar 

  8. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  9. Ali-Boucetta, H. et al. Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. 12, 459–461 (2008).

    Article  Google Scholar 

  10. Gannon, C. J. et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110, 2654–2665 (2007).

    Article  CAS  Google Scholar 

  11. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  CAS  Google Scholar 

  12. Kostarelos, K. et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotech. 2, 108–113 (2007).

    Article  CAS  Google Scholar 

  13. Podesta, J. P. et al. Antitumor activity and prolonged survival by carbon nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5, 1176–1185 (2009).

    Article  CAS  Google Scholar 

  14. Liu, Z., Tabakman, S., Welsher, K. & Dai, H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009).

    Article  CAS  Google Scholar 

  15. De la Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotech. 3, 557–562 (2008).

    Article  CAS  Google Scholar 

  16. Liu, Z. et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008).

    Article  CAS  Google Scholar 

  17. Lacerda, L. et al. Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv. Mater. 20, 225–230 (2008).

    Article  CAS  Google Scholar 

  18. McDevitt, M. R. et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE 2, e907 (2007).

    Article  Google Scholar 

  19. Singh, R. et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl Acad. Sci. USA 103, 3357–3362 (2006).

    Article  CAS  Google Scholar 

  20. Yandar, N. et al. Immunological profile of a Plasmodium vivax AMA-1 N-terminus peptide-carbon nanotube conjugate in an infected Plasmodium berghei mouse model. Vaccine 26, 5864–5873 (2008).

    Article  CAS  Google Scholar 

  21. Pantarotto, D. et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10, 961–966 (2003).

    Article  CAS  Google Scholar 

  22. McDevitt, M. R. et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48, 1180–1189 (2007).

    Article  CAS  Google Scholar 

  23. Deng, X. et al. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45, 1419–1424 (2007).

    Article  CAS  Google Scholar 

  24. Wang, H. et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4, 1019–1024 (2004).

    Article  CAS  Google Scholar 

  25. Meng, J. et al. Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 4, 1364–1370 (2008).

    Article  CAS  Google Scholar 

  26. Zhang, Z. et al. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res. 12, 4933–4939 (2006).

    Article  CAS  Google Scholar 

  27. Bhirde, A. A. et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3, 307–316 (2009).

    Article  CAS  Google Scholar 

  28. Ryman-Rasmussen, J. P. et al. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am. J. Resp. Cell Mol. 40, 349–358 (2009).

    Article  CAS  Google Scholar 

  29. Shvedova, A. A. et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am. J. Physiol. Lung C. 295, 552–565 (2008).

    Article  Google Scholar 

  30. Chou, C. C. et al. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 8, 437–445 (2008).

    Article  CAS  Google Scholar 

  31. Mitchell, L. A. et al. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 100, 203–214 (2007).

    Article  CAS  Google Scholar 

  32. Takagi, A. et al. Induction of mesothelioma in p53± mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 33, 105–116 (2008).

    Article  CAS  Google Scholar 

  33. Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech. 3, 423–428 (2008).

    Article  CAS  Google Scholar 

  34. Cherukuri, P. et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl Acad. Sci. USA 103, 18882–18886 (2006).

    Article  CAS  Google Scholar 

  35. Yang, S. T. et al. Biodistribution of pristine single-walled carbon nanotubes in vivo. J. Phys. Chem. 111, 17761–17764 (2007).

    CAS  Google Scholar 

  36. Schipper, M. L. et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nature Nanotech. 3, 216–221 (2008).

    Article  CAS  Google Scholar 

  37. Liu, Z. et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 1410–1415 (2008).

    Article  CAS  Google Scholar 

  38. Yang, S. T. et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 181, 182–189 (2008).

    Article  CAS  Google Scholar 

  39. Kostarelos, K. The long and short of carbon nanotube toxicity. Nature Biotechnol. 26, 774–776 (2008).

    Article  CAS  Google Scholar 

  40. Lacerda, L. et al. Carbon-nanotube shape and individualization critical for renal excretion. Small 4, 1130–1132 (2008).

    Article  CAS  Google Scholar 

  41. Lacerda, L. et al. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3, 149–161 (2008).

    Article  CAS  Google Scholar 

  42. Keefer, E. W. et al. Carbon nanotube coating improves neuronal recordings. Nature Nanotech. 3, 434–439 (2008).

    Article  CAS  Google Scholar 

  43. Sitharaman, B. et al. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43, 362–370 (2008).

    Article  CAS  Google Scholar 

  44. Khang, D., Park, G. E. & Webster, T. J. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. J. Biomed. Mater. Res. A 86, 253–260 (2008).

    Article  Google Scholar 

  45. Heller, D. A. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotech. 4, 114–120 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Trieste, INSTM, Italian Ministry of Education MUR (cofin Prot. 2006034372 and Firb RBIN04HC3S), Regione Friuli Venezia-Giulia, CNRS and the Agence Nationale de la Recherche (grant ANR-05-JCJC-0031-01). Partial support is also acknowledged from the European Union FP7 ANTICARB (HEALTH-2007-201587) research programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Kostarelos, A. Bianco or M. Prato.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kostarelos, K., Bianco, A. & Prato, M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nature Nanotech 4, 627–633 (2009). https://doi.org/10.1038/nnano.2009.241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.241

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research