Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates

Abstract

Self-assembled quasi one-dimensional nanostructures of π-conjugated molecules1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 may find a use in devices owing to their intriguing optoelectronic properties, which include sharp exciton transitions1,2,3,4,5, strong circular dichroism5,6,7, high exciton mobilities8,9 and photoconductivity10. However, many applications require immobilization of these nanostructures on a solid substrate, which is a challenge to achieve without destroying their delicate supramolecular structure. Here, we use a drop-flow technique to immobilize double-walled tubular J-aggregates of amphiphilic cyanine dyes without affecting their morphological or optical properties. High-resolution images of the topography and exciton fluorescence of individual J-aggregates are obtained simultaneously with polarization-resolved near-field scanning optical microscopy. These images show remarkably uniform supramolecular structure, both along individual nanotubes and between nanotubes in an ensemble, demonstrating their potential for light harvesting and energy transport.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Cylindrical chiral double-walled nanotubular J-aggregates of an amphiphilic cyanine dye molecule.
Figure 2: Immobilization of tubular J-aggregates on a solid substrate.
Figure 3: Fluorescence and topography NSOM images of the tubular aggregates.
Figure 4: Polarized fluorescence NSOM images of the tubular aggregates.
Figure 5: Fluorescence dichroism of single tubes with different orientation.

References

  1. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

    Article  CAS  Google Scholar 

  2. Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. P. H. J. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  Google Scholar 

  3. Hofmann, C. et al. Single-molecule study of the electronic couplings in a circular array of molecules: light-harvesting-2 complex from rhodospirillum molischianum. Phys. Rev. Lett. 90, 013004 (2003).

    Article  Google Scholar 

  4. Lang, E., Sorokin, A., Drechsler, M., Malyukin, Y. V. & Köhler, J. Optical spectroscopy on individual amphi-pic j-aggregates. Nano Lett. 5, 2635–2640 (2005).

    Article  CAS  Google Scholar 

  5. Didraga, C. et al. Structure, spectroscopy and microscopic model of tubular carbocyanine dye aggregates. J. Phys. Chem. B 108, 14976–14985 (2004).

    Article  CAS  Google Scholar 

  6. Röger, C., Miloslavina, Y., Brunner, D., Holzwarth, A. R. & Würthner, F. Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores. J. Am. Chem. Soc. 130, 5929–5939 (2008).

    Article  Google Scholar 

  7. von Berlepsch, H., Kirstein, S., Hania, R., Pugzlys, A. & Böttcher, C. Modification of the nanoscale structure of the j-aggregate of a sulfonate-substituted amphiphilic carbocyanine dye through incorporation of surface-active additives. J. Phys. Chem. B 111, 1701–1711 (2007).

    Article  CAS  Google Scholar 

  8. Psencik, J., Ma, Y.-Z., Arellano, J. B., Hala, J. & Gillbro, T. Excitation energy transfer dynamics and excited-state structure in chlorosomes of chlorobium phaeobacteroides. Biophys. J. 84, 1161–1179 (2003).

    Article  CAS  Google Scholar 

  9. Beljonne, D. et al. Excitation migration along oligophenylenevinylene-based chiral stacks: delocalization effects on transport dynamics. J. Phys. Chem. B 109, 10594–10604 (2005).

    Article  CAS  Google Scholar 

  10. Yamamoto, Y. et al. Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006).

    Article  CAS  Google Scholar 

  11. Kaiser, T. E., Wang, H., Stepanenko, V. & Würthner, F. Supramolecular construction of fluorescent j-aggregates based on hydrogen-bonded perylene dyes. Angew Chem. Int. Ed. 46, 5541–5544 (2007).

    Article  CAS  Google Scholar 

  12. Cacialli, F. et al. Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions. Nature Mater. 1, 160–164 (2002).

    Article  CAS  Google Scholar 

  13. Samori, P., Francke, V., Müllen, K. & Rabe, J. P. Self-assembly of a conjugated polymer: from molecular rods to a nanoribbon architecture with molecular dimensions. Chem. Eur. J. 5, 2312–2317 (1999).

    Article  CAS  Google Scholar 

  14. Bredas, J. L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5003, (2004).

    Article  CAS  Google Scholar 

  15. Jahnke, E., Severin, N., Kreutzkamp, P., Rabe, J. P. & Frauenrath, H. Molecular level control over hierarchical structure formation and polymerization of oligopeptide–polymer conjugates. Adv. Mater. 20, 409–414, (2008).

    Article  CAS  Google Scholar 

  16. De Rossi, U., Dähne, S., Meskers, S. C. J. & Dekkers, H. P. J. M. Spontaneous formation of chirality in j-aggregates showing Davydov splitting. Angew Chem. Int. Ed. Engl. 35, 760–763 (1996).

    Article  CAS  Google Scholar 

  17. Oostergetel, G. T. et al. Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett. 581, 5435–5439 (2007).

    Article  CAS  Google Scholar 

  18. Balaban, T. S., Tamiaki, H. & Holzwarth, A. R. in Supermolecular Dye Chemistry (ed. F. Würthner) 1–38 (Topics in Current Chemistry Vol. 258, Springer Verlag, 2005).

    Google Scholar 

  19. Lyon, J. L. et al. Spectroelectrochemical investigation of double-walled tubular j-aggregates of amphiphilic cyanine dyes. J. Phys. Chem. C 112, 1260–1268 (2008).

    Article  CAS  Google Scholar 

  20. Higgins, D. A., Kerimo, J., Vanden Bout, D. A. & Barbara, P. F. A molecular yarn: near-field optical studies of self-assembled, flexible, fluorescent fibers. J. Am. Chem. Soc. 118, 4049–4058 (1996).

    Article  CAS  Google Scholar 

  21. Teetsov, J. A. & Vanden Bout, D. A. Imaging molecular and nanoscale order in conjugated polymer thin films with near-field scanning optical microscopy. J. Am. Chem. Soc. 123, 3605–3606 (2001).

    Article  CAS  Google Scholar 

  22. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  CAS  Google Scholar 

  23. Hamanaka, Y., Kawasaki, O., Yamauchi, T. & Nakamura, A. Morphology of self-assembled merocyanine j-aggregates in films studied by scanning near-field optical microscope. Chem. Phys. Lett. 378, 47–54 (2003).

    Article  CAS  Google Scholar 

  24. Vacha, M. et al. Optical properties of individual nanostructures of molecular j-aggregates. J. Lumin. 98, 35–40 (2002).

    Article  CAS  Google Scholar 

  25. Malyukin, Y. V., Sorokin, A. V., Yefimova, S. L. & Lebedenko, A. Photo-induced reorganization of molecular packing of amphi-pic j-aggregates (single j-aggregate spectroscopy). J. Lumin. 112, 429–433 (2005).

    Article  CAS  Google Scholar 

  26. Didraga, C. & Knoester, J. Optical spectra and localization of excitons in inhomogeneous helical cylindrical aggregates. J. Chem. Phys. 121, 10687–10698 (2004).

    Article  CAS  Google Scholar 

  27. Hofmann, C., Aartsma, T. J., Michel, H. & Köhler, J. Direct observation of tiers in the energy landscape of a chromoprotein: a single-molecule study. Proc. Natl Acad. Sci. USA 100, 15534–15538 (2003).

    Article  CAS  Google Scholar 

  28. Cotlet, M. et al. Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy. Proc. Natl Acad. Sci. USA 98, 14398–14403 (2001).

    Article  CAS  Google Scholar 

  29. Hernando, J. et al. Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy. Phys. Rev. Lett. 97, 216403 (2006).

    Article  Google Scholar 

  30. Zhuang, W. et al. SFM characterization of poly(isocyanodipeptide) single polymer chains in controlled environments: effect of tip adhesion and chain swelling. Macromolecules 38, 473–480 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the R.A. Welch Foundation (grant no. F-1377) and Deutsche Forschungsgemeinschaft (Sfb 448 Mesoscopically Organized Composites).

Author information

Authors and Affiliations

Authors

Contributions

J.P.R. and D.A.V.B. directed the project. D.M.E. performed sample preparation and ensemble experiments, supervised by J.P.R., performed the near-field experiments and their data analysis under the guidance of D.A.V.B. and initiated the collaboration. J.K. contributed to data analysis and played an important role in putting the measurements in perspective. S.K. provided helpful discussions and beneficial interpretation of the data analysis. D.M.E., J.K. and D.A.V.B. co-wrote the paper, with input from the other authors.

Corresponding authors

Correspondence to Jürgen P. Rabe or David A. Vanden Bout.

Supplementary information

Supplementary information

Supplementary information (PDF 786 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eisele, D., Knoester, J., Kirstein, S. et al. Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. Nature Nanotech 4, 658–663 (2009). https://doi.org/10.1038/nnano.2009.227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.227

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research