Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells


Dye-sensitized solar cells consist of a random network of titania nanoparticles that serve both as a high-surface-area support for dye molecules and as an electron-transporting medium. Despite achieving high power conversion efficiencies, their performance is limited by electron trapping in the nanoparticle film. Electron diffusion lengths can be increased by transporting charge through highly ordered nanostructures such as titania nanotube arrays. Although titania nanotube array films have been shown to enhance the efficiencies of both charge collection and light harvesting, it has not been possible to grow them on transparent conducting oxide glass with the lengths needed for high-efficiency device applications (tens of micrometres). Here, we report the fabrication of transparent titania nanotube array films on transparent conducting oxide glass with lengths between 0.3 and 33.0 µm using a novel electrochemistry approach. Dye-sensitized solar cells containing these arrays yielded a power conversion efficiency of 6.9%. The incident photon-to-current conversion efficiency ranged from 70 to 80% for wavelengths between 450 and 650 nm.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Thick titanium films deposited on FTO-coated glass.
Figure 2: TNA films on FTO-coated glass.
Figure 3: Optical spectra of nanotube array films.
Figure 4: Performance of the DSCs fabricated using transparent nanotube array films.


  1. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  CAS  Google Scholar 

  2. O'Regan, B. & Gratzel, M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  3. Nazeeruddin, M. K. et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005).

    Article  CAS  Google Scholar 

  4. Fisher, A. C., Peter, L. M., Ponomarev, E. A., Walker, A. B. & Wijayanta, K. G. U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 104, 949–958 (2000).

    Article  CAS  Google Scholar 

  5. Nazeeruddin, M. K. et al. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-decarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN and SCN) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993).

    Article  CAS  Google Scholar 

  6. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  7. Adachi, M., Murata, Y., Okada, I. & Yoshikawa, S. Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, G488–G493 (2003).

    Article  CAS  Google Scholar 

  8. Feng, X. J. et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 3781–3786 (2008).

    Article  CAS  Google Scholar 

  9. Varghese, O. K., Paulose, M., LaTempa, T. J. & Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

    Article  CAS  Google Scholar 

  10. Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K. & Grimes, C. A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties and solar energy applications. Sol. Energy Mater. Sol. Cells 14, 2011–2075 (2006).

    Article  Google Scholar 

  11. Zhu, K., Neale, N. R., Miedaner, A. & Frank, A. J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotube arrays. Nano Lett. 7, 69–74 (2007).

    Article  CAS  Google Scholar 

  12. Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P. & Walker A. B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping and transfer of electrons. J. Am. Chem. Soc. 130, 13364–13372 (2008).

    Article  CAS  Google Scholar 

  13. Paulose, M. et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. B 110, 16179–16184 (2006).

    Article  CAS  Google Scholar 

  14. Paulose, M. et al. TiO2 nanotube arrays of 1,000 µm in length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992–14997 (2007).

    Article  CAS  Google Scholar 

  15. Ito, S. et al. High efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 4004–4006 (2006).

  16. Shankar, K. et al. Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007).

    Article  Google Scholar 

  17. Chen, C. C. et al. Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells. J. Phys. Chem. C 112, 19151–19157 (2008).

    Article  CAS  Google Scholar 

  18. Park, J. H., Lee, T.-W. & Kang, M. G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chem. Commun. 2867–2869 (2008).

  19. Chen, Q. & Xu, D. Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J. Phys. Chem. C 113, 6310–6314 (2009).

    Article  CAS  Google Scholar 

  20. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. & Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215–218 (2006).

    Article  CAS  Google Scholar 

  21. Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K. & Grimes, C. A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D 39, 2498–2503 (2006).

    Article  CAS  Google Scholar 

  22. Mor, G. K., Varghese, O. K., Paulose, M. & Grimes, C. A. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv. Funct. Mater. 15, 1291–1296 (2005).

    Article  CAS  Google Scholar 

  23. Zhu, K., Vinzant, T. B., Neale, N. R. & Frank, A. J. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett. 7, 3739–3746 (2007).

    Article  CAS  Google Scholar 

  24. Skeldon, P., Thompson, G. E., Garcia-Vergara, S. J., Iglesias-Rubianes, L. & Blanco-Pinzon, C. E. A tracer study of porous anodic alumina. Electrochem. Sol. State Lett. 9, B47–B51 (2006).

    Article  CAS  Google Scholar 

  25. Prakasam, H. E., Shankar, K., Paulose, M., Varghese, O. K. & Grimes, C. A. A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235–7241 (2007).

    Article  CAS  Google Scholar 

  26. Sommeling, P. M. et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B 110, 19191–19197 (2006).

    Article  CAS  Google Scholar 

  27. Gratzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A 164, 3–14 (2004).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge support for this work from the Department of Energy, grant no. DE-FG36-08GO18074.

Author information

Authors and Affiliations



M.P. conceived the idea, developed the anodization process and performed SEM imaging as well as DSC fabrication and characterization. O.K.V. conceived the idea and developed the process for coating titanium films, performed optical and structural studies as well as quantum efficiency measurements and composed the manuscript. M.P. and O.K.V. analysed the data. C.A.G. motivated and coordinated the work, supplied materials and analysis tools, and edited the manuscript.

Corresponding author

Correspondence to Craig A. Grimes.

Supplementary information

Supplementary information

Supplementary information (PDF 422 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varghese, O., Paulose, M. & Grimes, C. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotech 4, 592–597 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research