Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Placement and orientation of individual DNA shapes on lithographically patterned surfaces


Artificial DNA nanostructures1,2 show promise for the organization of functional materials3,4 to create nanoelectronic5 or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter ‘staple strands’6, can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO2 and diamond-like carbon. In buffer with 100 mM MgCl2, DNA origami bind with high selectivity and good orientation: 70–95% of sites have individual origami aligned with an angular dispersion (±1 s.d.) as low as ±10° (on diamond-like carbon) or ±20° (on SiO2).

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The problem of random DNA nanostructure deposition and a lithographic scheme for addressing it.
Figure 2: Alignment of DNA origami on SiO2 and diamond-like carbon (DLC) surfaces.
Figure 3: Dynamic binding of DNA origami under atomic force microscopy (AFM).
Figure 4: Placement of triangles onto a variety of shapes.


  1. 1

    Seeman, N. C. Nucleic-acid junctions and lattices. J. Theoret. Biol. 99, 237–247 (1982).

    CAS  Article  Google Scholar 

  2. 2

    LaBean, T. H. & Li, H. Constructing novel materials with DNA. Nanotoday 2, 26–34 (2007).

    Article  Google Scholar 

  3. 3

    Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Kennen, K., Berman, R. S., Buchstan, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field effect transistor. Science 302, 1380–1382 (2003).

    Article  Google Scholar 

  6. 6

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  Article  Google Scholar 

  7. 7

    International Technology Roadmap for Semiconductors, 2007 edition (

  8. 8

    Zhang, L. et al. Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 130, 2686–2691 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Cui, Y. et al. Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4, 1093–1098 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Malaquin, L., Kraus, T., Schmid, H., Delamarche, E. & Wolf, H. Controlled particle placement through convective and capillary assembly. Langmuir 23, 11513–11521 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Wang, Y. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad. Sci. USA, 103, 2026–2031 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Seemann, L., Stemmer, A. & Naujoks, N. Local surface charges direct the deposition of carbon nanotubes and fullerenes into nanoscale patterns. Nano Lett. 7, 3007–3012 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Fan, Z. et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8, 20–25 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Cheng, J. Y., Ross, C. A., Smith, H. I. & Thomas, E. L. Templated self-assembly of block copolymers: top-down helps bottom-up. Adv. Mater. 18, 2505–2521 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Losilla, N. S. et al. Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography. Nanotechnology 19, 455308 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Chi, P.-Y., Lin, H.-Y., Liu, C.-H. & Chen, C.-D. Generation of nano-scaled DNA patterns through electro-beam induced charge trapping. Nanotechnology 17, 4854–4858 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Tanaka, S., Taniguchi, M. & Kawai, T. Selective adsorption of DNA onto SiO2 surface in SiO2/SiH pattern. Jpn. J. Appl. Phys. 43, 7346–7349 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Djenizian, T., Balaur, E. & Schmuki, P. Direct immobilization of DNA on diamond-like carbon nanodots. Nanotechnology 17, 2004–2007 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Sarveswaran, K., Hu, W., Huber, P. W., Bernstein, G. H. & Lieberman, M. Deposition of DNA rafts on cationic SAMs on silicon [100]. Langmuir 22, 11279–11283 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Kuzyk, A., Yurke, B., Toppari, J. J., Linko, V. & To¨rma¨, P. Dielectrophoretic trapping of DNA origami. Small 4, 447–450 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Moreau, W. M. Semiconductor Lithography Principles, Practices and Materials (Plenum Press, 1998).

    Google Scholar 

  24. 24

    Ferrari, A. C. Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180, 190–206 (2004).

    Article  Google Scholar 

  25. 25

    Druz, B. et al. Ion beam deposition of diamond-like carbon from an RF inductively coupled CH4-plasma source. Surf. Coat. Technol. 86–87, 708–714 (1996).

    Article  Google Scholar 

  26. 26

    Pastŕe, D. et al. Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strength. Langmuir 22, 6651–6660 (2006).

    Article  Google Scholar 

  27. 27

    Zhang, X. G. Electrochemistry of Silicon and its Oxide (Springer, 2001).

    Google Scholar 

  28. 28

    Ermakova, L. E., Sidorova, M. P. & Bogdanova, N. F. Influence of the structure of boundary layers and the nature of counterions on the position of the isoelectric point of silica surfaces. Colloid J. 68, 411–416 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Grosberg, A. Y., Nguyen, T. T. & Shklovskii, B. I. Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74, 329–345 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Lyklema, J. Overcharging, charge reversal: chemistry or physics? Colloids Surf. A 291, 3–12 (2006).

    CAS  Article  Google Scholar 

  31. 31

    van der Heyden, F. H. J., Stein, D., Besteman, K., Lemay, S. G. & Dekker, C. Charge inversion at high ionic strength studied by streaming currents. Phys. Rev. Lett. 96, 224502 (2006).

    Article  Google Scholar 

  32. 32

    Loewenstein, L. M. & Mertens, P. W. Adsorption of metal ions onto hydrophilic silicon surfaces from aqueous solution: effect of pH. J. Electrochem. Soc. 145, 2841–2847 (1998).

    CAS  Article  Google Scholar 

  33. 33

    Szunerits, S. & Boukherroub, R. Different strategies for functionalization of diamond surfaces. J. Solid State Electrochem. 12, 1205–1218 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Hung, A. M. et al. Spatially-directed assembly of gold nanoparticles on lithographically patterned DNA origami. Nature Nanotech. (Submitted).

Download references


This work was supported by National Science Foundation grants CCF/NANO/EMT-0622254 and -0829951 and the Focus Center Research Program (FCRP). Center on Functional Engineered Nano Architectonics (FENA) Theme 2. P.W.K.R thanks Microsoft Corporation for support. The authors thank D. Miller for performing XPS measurements, B. Davis for optical lithography, D. Hoffman for sample preparation, and M. Sanchez, M. Hart and F. Houle for helpful discussions.

Author information




All authors contributed significantly to the work presented in this paper.

Corresponding authors

Correspondence to Paul W. K. Rothemund or Gregory M. Wallraff.

Supplementary information

Supplementary information

Supplementary information (PDF 9659 kb)

Supplementary information

Supplementary movie (MOV 3249 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kershner, R., Bozano, L., Micheel, C. et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotech 4, 557–561 (2009).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research