Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells

Abstract

Low concentrations of reactive oxygen species, notably hydrogen peroxide (H2O2), mediate various signalling processes in the cell1,2. Production of these signals is highly regulated3 and a suitable probe is needed to measure these events. Here, we show that a probe based on a single nanoparticle can quantitatively measure transient H2O2 generation in living cells. The Y0.6Eu0.4VO4 nanoparticles undergo photoreduction under laser irradiation but re-oxidize in the presence of oxidants, leading to a recovery in luminescence. Our probe can be regenerated and reliably detects intracellular H2O2 with a 30-s temporal resolution and a dynamic range of 1–45 µM. The differences in the timing of intracellular H2O2 production triggered by different signals were also measured using these nanoparticles. Although the probe is not selective towards H2O2, in many signalling processes H2O2 is, however, the dominant oxidant3,4,5,6. In conjunction with appropriate controls, this probe is a powerful tool for unravelling pathways that involve reactive oxygen species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Luminescence properties of silica-coated Y0.6Eu0.4VO4 nanoparticles spin-coated on silica coverslips.
Figure 2: Quantitative detection of H2O2.
Figure 3: Intracellular H2O2 produced by VSMCs after ET-1 stimulation.
Figure 4: Intracellular H2O2 produced after PDGF stimulation.

Similar content being viewed by others

References

  1. Rhee, S. G. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  Google Scholar 

  2. Bedard, K. & Krause, K.-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Article  CAS  Google Scholar 

  3. D'Autréaux, B. & Toledano, M. B. ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  Google Scholar 

  4. Sundaresan, M., Yu, Z.-X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).

    Article  CAS  Google Scholar 

  5. Bae, Y. S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J. Biol. Chem. 272, 217–221 (1997).

    Article  CAS  Google Scholar 

  6. Halliwell, B. & Cutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford Univ. Press, 1999).

    Google Scholar 

  7. Plonka, A. et al. Superoxide radical dismutation by copper proteins. J. Radioanal. Nucl. Chem. 101, 221–225 (1986).

    Article  CAS  Google Scholar 

  8. Lambeth, J. D. NOx enzymes and the biology of reactive oxygen. Nature Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  Google Scholar 

  9. Clempus, R. E. & Griendling, K. K. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 71, 216–225 (2006).

    Article  CAS  Google Scholar 

  10. Paravicini, T. M. & Touyz, R. M. Redox signaling in hypertension. Cardiovasc. Res. 71, 247–258 (2006).

    Article  CAS  Google Scholar 

  11. Chen, C. H. et al. Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol. Pharmacol. 69, 1347–1355 (2006).

    Article  CAS  Google Scholar 

  12. Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 386, 532–543 (2006).

    Article  CAS  Google Scholar 

  13. Hempel, S. L., Buettner, G. R., O'Malley, Y. Q., Wessels, D. A. & Flaherty, D. M. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med. 27, 146–159 (1999).

    Article  CAS  Google Scholar 

  14. Miller, E. W., Albers, A. E., Pralle, A., Isacoff, E. Y. & Chang, C. J. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659 (2005).

    Article  CAS  Google Scholar 

  15. Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chem. Biol., 3 263–267 (2007).

    Article  CAS  Google Scholar 

  16. Lee, D. et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nature Mater. 6, 765–769 (2007).

    Article  CAS  Google Scholar 

  17. Seshiah, P. N. et al. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ. Res. 91, 406–413 (2002).

    Article  CAS  Google Scholar 

  18. Wolfbeis, O. S., Duerkop, A., Wu, M. & Lin, Z. Europium ion-based luminescent sensing probe for hydrogen peroxide. Angew. Chem. Int. Ed. 41, 4495–4498 (2002).

    Article  CAS  Google Scholar 

  19. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nature Meth. 3, 281–286 (2006).

    Article  CAS  Google Scholar 

  20. Beaurepaire, E. et al. Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single molecule level. Nano Lett. 4, 2079–2083 (2004).

    Article  CAS  Google Scholar 

  21. Casanova, D., Giaume, D., Gacoin, T., Boilot, J.-P. & Alexandrou, A. Optical in situ size determination of single lanthanide-ion doped oxide nanoparticles. Appl. Phys. Lett. 89, 253103 (2006).

    Article  Google Scholar 

  22. Dorenbos, P. Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds. J. Phys. Condens. Matt. 15, 2645–2665 (2003).

    Article  CAS  Google Scholar 

  23. Sawyer, D. T. & Valentine, J. S. How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981).

    Article  CAS  Google Scholar 

  24. Hall, C. N. & Attwell, D. Assessing the physiological concentration and targets of nitric oxide in brain tissue. J. Physiol. 586, 3597–3615 (2008).

    Article  CAS  Google Scholar 

  25. Chansel, D. et al. Heparin binding EGF is necessary for vasospastic response to endothelin. FASEB J. 20, E1368–E1381 (2006).

    Article  Google Scholar 

  26. Rosenkranz, S. et al. Inhibition of the PDGF receptor by red wine flavonoids provides a molecular explanation for the ‘French paradox’. FASEB J. 16, 1958–1960 (2002).

    Article  CAS  Google Scholar 

  27. Heumüller, S. et al. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51, 211–217 (2008).

    Article  Google Scholar 

  28. Daub, H., Weiss, F. U., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560 (1996).

    Article  CAS  Google Scholar 

  29. Saito, Y., Haendeler, J., Hojo, Y., Yamamoto, K. & Berk, B. C. Receptor heterodimerization: essential mechanism for platelet-derived growth factor-induced epidermal growth factor receptor transactivation. Mol. Cell. Biol. 21, 6387–6394 (2001).

    Article  CAS  Google Scholar 

  30. Casanova, D. et al. Counting the number of proteins coupled to single nanoparticles. J. Am. Chem. Soc. 129, 12592–12593 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Mialon and M. Moreau for nanoparticle synthesis.

Author information

Authors and Affiliations

Authors

Contributions

D.C., C.B. and T.-L.N. contributed equally. D.C., C.B., P.-L.T. and A.A. conceived and designed the experiments. D.C., C.B. and T.-L.N. performed the experiments. D.C., C.B., T.-L.N. and A.A. analysed the data. R.O.R. and L.B.-S. contributed the cell cultures and data on nanoparticle toxicity. T.G. and J.-P.B. contributed the nanoparticles. All authors discussed the results. C.B. and A.A. co-wrote the paper.

Corresponding author

Correspondence to Antigoni Alexandrou.

Supplementary information

Supplementary information

Supplementary information (PDF 970 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casanova, D., Bouzigues, C., Nguyên, TL. et al. Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells. Nature Nanotech 4, 581–585 (2009). https://doi.org/10.1038/nnano.2009.200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing