Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic superlubricity and the elimination of wear on the nanoscale

Abstract

One approach to ultrahigh-density data storage involves the use of arrays of atomic force microscope probes to read and write data on a thin polymer film, but damage to the ultrasharp silicon probe tips caused by mechanical wear has proved problematic. Here, we demonstrate the effective elimination of wear on a tip sliding on a polymer surface over a distance of 750 m by modulating the force acting on the tip–sample contact. Friction measurements as a function of modulation frequency and amplitude indicate that a reduction of friction is responsible for the reduction in wear to below our detection limit. In addition to its relevance to data storage, this approach could also reduce wear in micro- and nanoelectromechanical systems and other applications of scanning probe microscopes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scanning electron micrograph of the cantilever and tip used in this study.
Figure 2: Wear data for tips sliding on a polymer surface with different load forces without electrostatic excitation.
Figure 3: Wear data for a tip sliding on a polymer surface with a modulated force acting on the tip–sample contact.
Figure 4: Friction measurements.
Figure 5: Finite-element simulations of the cantilever mode shapes.
Figure 6: Plots of friction signal versus mean amplitude of applied force.

References

  1. Vettiger, P. et al. The ‘millipede’—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002).

    Article  Google Scholar 

  2. Pantazi, A. et al. Probe-based ultrahigh-density storage technology. IBM J. Res. Devel. 52, 493–511 (2008).

    Article  CAS  Google Scholar 

  3. Hamann, H., O'Boyle, M., Martin, Y. C., Rooks, M. & Wickramasinghe, H. K. Ultra-high-density phase-change storage and memory. Nature Mater. 5, 383–387 (2006).

    Article  CAS  Google Scholar 

  4. Cho, Y. et al. Terabit inch−2 ferroelectric data storage using scanning nonlinear dielectric microscopy nanodomain engineering system. Nanotechnology 14, 637–642 (2003).

    Article  CAS  Google Scholar 

  5. Tseng, A. A., Notagiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: a review. J. Vac. Sci. Technol. B 23, 877–894 (2005).

    Article  CAS  Google Scholar 

  6. Gotsmann, B., Dürig, U., Frommer, J. & Hawker, C. J. Exploiting chemical switching in a Diels–Alder polymer for nanoscale probe lithography and data storage. Adv. Funct. Mat. 16, 1499–1505 (2006).

    Article  CAS  Google Scholar 

  7. Bhushan, B., Kwak, K. J. & Palacio, M. Nanotribology and nanomechanics of AFM probe-based data recording technology. J. Phys. Condens. Matter 20, 365207 (2008).

    Article  Google Scholar 

  8. Gotsmann, B. & Lantz, M. A. Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008).

    Article  Google Scholar 

  9. Bhushan, B. Introduction to Tribology (Wiley, 2002).

    Google Scholar 

  10. Erdemir, A., Eryilmaz, O. L., Nilufer, I. B. & Fenske, G. R. Surf. Coat. Technol. 133/134, 448–454 (2000).

    Article  Google Scholar 

  11. Chuang, F. Y., Sun, C. Y., Cheng, H. F., Huang, C. M. & Lin, I. N. Enhancement of electron emission efficiency of Mo tips by diamondlike carbon coatings. Appl. Phys. Lett. 68, 1666–1668 (1996).

    Article  CAS  Google Scholar 

  12. Mihalcea, C. et al. Fabrication of monolithic diamond probes for scanning probe microscopy applications. Appl. Phys. A 66, S87–S90 (1998).

    Article  CAS  Google Scholar 

  13. Ried, R. P., Mamin, H. J. & Rugar, D. J. Air-bearing sliders and plane–plane–concave tips for atomic force microscope cantilevers. Microelectromech. Syst. 9, 52–57 (2000).

    Article  Google Scholar 

  14. Kim, K.-H. et al. Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small 1, 866–874 (2005).

    Article  CAS  Google Scholar 

  15. Gnecco, E. & Meyer, E. (Eds.) Fundamentals of Friction and Wear on the Nanoscale (Springer, 2007).

    Book  Google Scholar 

  16. d'Accunto, M. Theoretical approach for the quantification of wear mechanisms on the nanoscale. Nanotechnology 15, 795–801 (2004).

    Article  Google Scholar 

  17. Kopta, S. & Salmeron, M. The atomic scale origin of wear on mica and its contribution to friction. J. Chem. Phys. 113, 8249–8252 (2000).

    Article  CAS  Google Scholar 

  18. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  19. Sahoo, D. R. et al. On intermittent-contact mode sensing using electrostatically-actuated micro-cantilevers with integrated thermal sensors. Proc. Am. Control Conf. 2034–2039 (2008).

  20. Dinelli, F., Biswas, S. K., Briggs, G. A. D. & Kolosov, O. V. Ultrasound induced lubricity in microscopic contact. Appl. Phys. Lett. 71, 1177–1179 (1997).

    Article  CAS  Google Scholar 

  21. Behme, G. & Hesjedal, T. Influence of surface acoustic waves on lateral forces in scanning force microscopies. J. Appl. Phys. 89, 4850–4856 (2001).

    Article  CAS  Google Scholar 

  22. Socoliuc, A. et al. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006).

    Article  CAS  Google Scholar 

  23. Erdemir, A. & Martin, J.-M. (eds) Superlubricity (Elsevier, 2007).

    Google Scholar 

  24. Despont, M. et al. VLSI-NEMS chip for parallel AFM data storage. Sens. Actuat. A 80, 100–107 (2000).

    Article  CAS  Google Scholar 

  25. Pozidis, H. et al. Demonstration of thermomechanical recording at 641 Gbit/sq.in. IEEE Trans. Magn. 40, 2531–2536 (2004).

    Article  Google Scholar 

  26. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E. & Brune, H. Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003).

    Article  CAS  Google Scholar 

  27. Tambe, N. S. & Bhushan, B. Durability studies of micro/nanoelectromechanical systems materials, coatings and lubricants at high sliding velocities (up to 10 mm s−1) using a modified atomic force microscope. J. Vac. Sci. Technol. A 23, 830–835 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge helpful discussions with A. Knoll and U. Duerig, and thank the probe storage team at the Zurich Research Laboratory. In particular, the authors thank H. Rothuizen for assistance with FEM modelling, M. Despont and U. Drechsler for assistance with the cantilevers, R. Pratt and J. Hedrick for the polymer samples, D. Jubin for experimental support, and E. Eleftheriou and P. Seidler for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Lantz.

Supplementary information

Supplementary information

Supplementary information (PDF 407 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lantz, M., Wiesmann, D. & Gotsmann, B. Dynamic superlubricity and the elimination of wear on the nanoscale. Nature Nanotech 4, 586–591 (2009). https://doi.org/10.1038/nnano.2009.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.199

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research