Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonic fluorescent quantum dots

Abstract

Combining multiple discrete components into a single multifunctional nanoparticle could be useful in a variety of applications. Retaining the unique optical and electrical properties of each component after nanoscale integration is, however, a long-standing problem1,2. It is particularly difficult when trying to combine fluorophores such as semiconductor quantum dots with plasmonic materials such as gold, because gold and other metals can quench the fluorescence3,4. So far, the combination of quantum dot fluorescence with plasmonically active gold has only been demonstrated on flat surfaces5. Here, we combine fluorescent and plasmonic activities in a single nanoparticle by controlling the spacing between a quantum dot core and an ultrathin gold shell with nanometre precision through layer-by-layer assembly. Our wet-chemistry approach provides a general route for the deposition of ultrathin gold layers onto virtually any discrete nanostructure or continuous surface, and should prove useful for multimodal bioimaging6, interfacing with biological systems7, reducing nanotoxicity8, modulating electromagnetic fields5 and contacting nanostructures9,10.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of gold-shell-encapsulated quantum dots (QDs).
Figure 2: TEM imaging of QD–gold hybrid nanoparticles.
Figure 3: Optical properties of the QD–gold core–shell nanoparticles.
Figure 4: Photostability and dual imaging modalities of the QD–gold nanonanoparticles.

References

  1. Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    Article  CAS  Google Scholar 

  2. Mokari, T., Sztrum, C. G., Salant, A., Rabani, E. & Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Mater. 4, 855–863 (2005).

    Article  CAS  Google Scholar 

  3. Dubertret, B., Calame, M. & Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol. 19, 365–370 (2001).

    Article  CAS  Google Scholar 

  4. Pons, T. et al. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett. 7, 3157–3164 (2007).

    Article  CAS  Google Scholar 

  5. Kulakovich, O. et al. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2, 1449–1452 (2002).

    Article  CAS  Google Scholar 

  6. Cai, W. B. & Chen, X. Y. Nanoplatforms for targeted molecular imaging in living subjects. Small 3, 1840–1854 (2007).

    Article  CAS  Google Scholar 

  7. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Article  CAS  Google Scholar 

  8. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).

    Article  CAS  Google Scholar 

  9. Haick, H. & Cahen, D. Contacting organic molecules by soft methods: towards molecule-based electronic devices. Acc. Chem. Res. 41, 359–366 (2008).

    Article  CAS  Google Scholar 

  10. Hipps, K. W. Molecular electronics: It's all about contacts. Science 294, 536–537 (2001).

    Article  CAS  Google Scholar 

  11. Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).

    Article  Google Scholar 

  12. Shimizu, K. T., Woo, W. K., Fisher, B. R., Eisler, H. J. & Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 89, 117401 (2002).

    Article  CAS  Google Scholar 

  13. Pompa, P. P. et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nature Nanotech. 1, 126–130 (2006).

    Article  CAS  Google Scholar 

  14. Chang, E. et al. Protease-activated quantum dot probes. Biochem. Biophys. Res. Commun. 334, 1317–1321 (2005).

    Article  CAS  Google Scholar 

  15. Baer, R., Neuhauser, D. & Weiss, S. Enhanced absorption induced by a metallic nanoshell. Nano Lett. 4, 85–88 (2004).

    Article  CAS  Google Scholar 

  16. Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2, 18–29 (2007).

    Article  Google Scholar 

  17. Murphy, C. J. et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).

    Article  CAS  Google Scholar 

  18. Liao, S. Y. Light transmittance and RF shielding effectiveness of a gold film on a glass substrate. IEEE Trans. Electromagn. Compat. EMC-17, 211–216 (1975).

    Article  Google Scholar 

  19. Hirsch, L. R. et al. Metal nanoshells. Ann.Biomed. Eng. 34, 15–22 (2006).

    Article  Google Scholar 

  20. Oldenburg, S. J., Averitt, R. D., Westcott, S. L. & Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

    Article  CAS  Google Scholar 

  21. Reith, F., Rogers, S. L., McPhail, D. C. & Webb, D. Biomineralization of gold: biofilms on bacterioform gold. Science 313, 233–236 (2006).

    Article  CAS  Google Scholar 

  22. Djalali, R., Chen, Y.-F. & Matsui, H. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. J. Am. Chem. Soc. 125, 5873–5879 (2003).

    Article  CAS  Google Scholar 

  23. Janknecht, R. et al. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc. Natl Acad. Sci. USA 88, 8972–8976 (1991).

    Article  CAS  Google Scholar 

  24. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  CAS  Google Scholar 

  25. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  Google Scholar 

  26. Caruso, F. Nanoengineering of particle surfaces. Adv. Mater. 13, 11–22 (2001).

    Article  CAS  Google Scholar 

  27. Chen, H. Y. et al. Encapsulation of single small gold nanoparticles by diblock copolymers. ChemPhysChem 9, 388–392 (2008).

    Article  CAS  Google Scholar 

  28. Park, J., Joo, J., Kwon, S. G., Jang, Y. & Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew Chem. Int. Ed. 46, 4630–4660 (2007).

    Article  CAS  Google Scholar 

  29. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  30. Michalet, X. et al. Quantum dots for live cells, in vivo imaging and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  31. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000).

    Article  CAS  Google Scholar 

  32. Lu, X., Yavuz, M. S., Tuan, H.-Y., Korgel, B. A. & Xia, Y. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine–AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 130, 8900–8901 (2008).

    Article  CAS  Google Scholar 

  33. Wang, C. & Sun, S. H. Facile synthesis of ultrathin and single-crystalline Au nanowires. Chem.-Asian J. 4, 1028–1034 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH (R01 CA131797, NSF, 0645080), the Seattle Foundation and the Department of Bioengineering at the University of Washington. X.G. thanks the NSF for a Faculty Early Career Development award (CAREER). We are especially grateful to T. Kavanagh and D. Eaton for fruitful discussions on nanotoxicity, UW Nanotech User Facility for HRTEM, Z. Wang and Y. Ding for TEM image interpretation, D. Chiu and D. Ginger for critical reading of the manuscript and D. Zhang for help with computer graphics.

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and X.G. conceived and designed the experiments. Y.J. performed the experiments. Y.J. and X.G. analysed and discussed the data. X.G. wrote the paper.

Corresponding author

Correspondence to Xiaohu Gao.

Supplementary information

Supplementary information

Supplementary information (PDF 340 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, Y., Gao, X. Plasmonic fluorescent quantum dots. Nature Nanotech 4, 571–576 (2009). https://doi.org/10.1038/nnano.2009.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.193

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research