Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy

Abstract

Conventional phonon Raman spectroscopy is a powerful experimental technique for the study of crystalline solids1,2,3,4,5 that allows crystallography, phase and domain identification6,7 on length scales down to 1 µm. Here we demonstrate the extension of tip-enhanced Raman spectroscopy to optical crystallography on the nanoscale by identifying intrinsic ferroelectric domains of individual BaTiO3 nanocrystals through selective probing of different transverse optical phonon modes in the system. The technique is generally applicable for most crystal classes, and for example, structural inhomogeneities, phase transitions, ferroic order and related finite-size effects occurring on nanometre length scales can be studied with simultaneous symmetry selectivity, nanoscale sensitivity and chemical specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and crystal symmetry.
Figure 2: Phonon TERS of BaTiO3.
Figure 3: Spatially resolved TERS for ferroelectric domain imaging.

Similar content being viewed by others

References

  1. Cardona, M. (ed.) Light Scattering in Solids I (Springer, 1983).

    Book  Google Scholar 

  2. Bustarret, E. et al. Superconductivity in doped cubic silicon. Nature 444, 465–468 (2006).

    Article  CAS  Google Scholar 

  3. Fleury, P. A. & Worlock, J. M. Electric-field-induced Raman scattering in SrTiO3 and KTaO3 . Phys. Rev. 174, 613–623 (1968).

    Article  CAS  Google Scholar 

  4. Leite, R. C. C., Scott, J. F. & Damen, T. C. Multiple-phonon resonant raman scattering in CdS. Phys. Rev. Lett. 22, 780–782 (1969).

    Article  CAS  Google Scholar 

  5. Cerdeira, F., Buchenauer, C. J., Pollak, F. H. & Cardona, M. Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors. Phys. Rev. B 5, 580–593 (1972).

    Article  Google Scholar 

  6. Deluca, M., Higashino, M. & Pezzotti, G. Raman tensor elements for tetragonal BaTiO3 and their use for in-plane domain texture assessments. Appl. Phys. Lett. 91, 091906 (2007).

    Article  Google Scholar 

  7. Lagos, P. L. et al. Identification of ferroelectric domain structure in BaTiO3 for Raman spectroscopy. Surf. Sci. 532, 493–500 (2003).

    Article  Google Scholar 

  8. Bailo, E. & Deckert, V. Tip-enhanced raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew. Chem. Int. Ed. 47, 1658–1661 (2008).

    Article  CAS  Google Scholar 

  9. Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  Google Scholar 

  10. Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).

    Article  Google Scholar 

  11. Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

    Article  CAS  Google Scholar 

  12. Steidtner, J. & Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecule with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008).

    Article  Google Scholar 

  13. Ossikovski, R., Nguyen, Q. & Picardi, G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Phys. Rev. B 75, 045412 (2007).

    Article  Google Scholar 

  14. Motahashi, M., Hayazawa, N., Tarun, A. & Kawata, S. Depolarization effect in reflection-mode tip-enhanced Raman scattering for Raman active crystals. J. Appl. Phys. 103, 034309 (2008).

    Article  Google Scholar 

  15. Matsui, R., Verma, P., Ichimura, T., Inouye, Y. & Kawata, S. Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 90, 061906 (2007).

    Article  Google Scholar 

  16. Setter, N. et al. Ferroelectric thin films: review of materials, properties and applications. J. Appl. Phys. 100, 051606 (2006).

    Article  Google Scholar 

  17. Zalar, B., Laguta, V. V. & Blinc, R. NMR evidence for the coexistence of order-disorder and displacive components in barium titanate. Phys. Rev. Lett. 90, 037601 (2003).

    Article  Google Scholar 

  18. Maksimov, E. G., Matsko, N. L., Ebert, S. V. & Magnitskaya, M. V. Some problems in the theory of perovskite ferroelectrics. Ferroelectrics 354, 19–38 (2007).

    Article  CAS  Google Scholar 

  19. Jang, M.-S., Takashige, M., Kojima, S. & Nakamura, T. Oblique phonons with special concern to the soft phonon mode in tetragonal BaTiO3 . J. Phys. Soc. Jpn 52, 1025–1033 (1983).

    Article  CAS  Google Scholar 

  20. Perry, C. H. & Hall, D. B. Temperature dependence of the Raman spectrum of BaTiO3 . Phys. Rev. Lett. 15, 700–702 (1965).

    Article  CAS  Google Scholar 

  21. Neacsu, C. C., Steudle, G. A. & Raschke, M. B. Plasmonic light scattering from nanoscopic metal tips. Appl. Phys. B 80, 295–300 (2005).

    Article  CAS  Google Scholar 

  22. Le Ru, E. C. et al. Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects. J. Phys. Chem. C 112, 8117–8121 (2008).

    Article  CAS  Google Scholar 

  23. Gucciardi, P. G. et al. Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy. Nanotechnology 19, 215702 (2008).

    Article  CAS  Google Scholar 

  24. Lines, M. & Glass, A. Principles and Applications of Ferroelectric and Related Materials (Oxford Univ. Press, 2001).

    Book  Google Scholar 

  25. Munoz-Saldana, J., Schneider, G. A. & Eng, L. M. Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy. Surf. Sci. 480, L402–L410 (2001).

    Article  CAS  Google Scholar 

  26. Kalinin, S. V. & Bonnell, D. A. Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy. J. Appl. Phys. 87, 3950–3957 (2000).

    Article  CAS  Google Scholar 

  27. Sackrow, M., Stanciu, C., Lieb, M. A. & Meixner, A. J. Imaging nanometer-sized hot spots on smooth Au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. Chem Phys Chem 9, 316–320 (2008).

    Article  CAS  Google Scholar 

  28. Kehr, S. C. et al. Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. Phys. Rev. Lett. 100, 256403 (2008).

    Article  CAS  Google Scholar 

  29. Mao, Y., Banerjee, S. & Wong, S. S. Large-scale synthesis of single-crystalline perovskite nanostructures. J. Am. Chem. Soc. 125, 15718–15719 (2003).

    Article  CAS  Google Scholar 

  30. Yun, W. S., Urban, J. J., Gu, Q. & Park, H. Ferroelectric properties of individual barium titanate nanowire investigated by scanned probe microscopy. Nano Lett. 2, 447–450 (2002).

    Article  CAS  Google Scholar 

  31. Ren, B., Picardi, G. & Pettinger, B. Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev. Sci. Instrum. 75, 837–841 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Berweger acknowledges support from the University of Washington Center for Nanotechnology with funding from NSF-IGERT. Funding from the National Science Foundation (NSF CAREER grant CHE 0748226) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.B., C.C.N., and M.B.R. conceived the experiments. S.B. and C.C.N. carried out the experiments. S.B. performed the data analysis. Y.M., H.Z. and S.S.W. synthesized the sample materials. S.B. wrote the manuscript with contributions from C.C.N. and M.B.R.

Corresponding author

Correspondence to Markus B. Raschke.

Supplementary information

Supplementary information

Supplementary information (PDF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berweger, S., Neacsu, C., Mao, Y. et al. Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nature Nanotech 4, 496–499 (2009). https://doi.org/10.1038/nnano.2009.190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing