Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transfer of gold nanoparticles from the water column to the estuarine food web

Abstract

Within the next five years the manufacture of large quantities of nanomaterials may lead to unintended contamination of terrestrial and aquatic ecosystems1. The unique physical, chemical and electronic properties of nanomaterials allow new modes of interaction with environmental systems that can have unexpected impacts2,3. Here, we show that gold nanorods can readily pass from the water column to the marine food web in three laboratory-constructed estuarine mesocosms containing sea water, sediment, sea grass, microbes, biofilms, snails, clams, shrimp and fish. A single dose of gold nanorods (65 nm length × 15 nm diameter) was added to each mesocosm and their distribution in the aqueous and sediment phases monitored over 12 days. Nanorods partitioned between biofilms, sediments, plants, animals and sea water with a recovery of 84.4%. Clams and biofilms accumulated the most nanoparticles on a per mass basis, suggesting that gold nanorods can readily pass from the water column to the marine food web.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Nanoparticle concentration versus time.

Similar content being viewed by others

References

  1. Handy, R. D., Owen, R. & Valsami-Jones, E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges and future needs. Ecotoxicology 17, 315–325 (2008).

    Article  CAS  Google Scholar 

  2. Behra, R. & Krug, H. Nanoecotoxicology—Nanoparticles at large. Nature Nanotech. 3, 253–254 (2008).

    Article  CAS  Google Scholar 

  3. Owen, R. & Handy, R. Formulating the problems for environmental risk assessment of nanomaterials. Environ. Sci. Technol. 41, 5582–5588 (2007).

    Article  Google Scholar 

  4. Xie, B., Xu, Z. H., Guo, W. H. & Li, Q. L. Impact of natural organic matter on the physicochemical properties of aqueous C-60 nanoparticles. Environ. Sci. Technol. 42, 2853–2859 (2008).

    Article  CAS  Google Scholar 

  5. Hyung, H., Fortner, J. D., Hughes, J. B. & Kim, J. H. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 41, 179–184 (2007).

    Article  CAS  Google Scholar 

  6. Manning, A. J., Bass, S. J. & Dyer, K. R. Floc properties in the turbidity maximum of a mesotidal estuary during neap and spring tidal conditions. Mar. Geol. 235, 193–211 (2006).

    Article  Google Scholar 

  7. Lauth, J. R., Scott, I. G., Cherry, D. S. & Buikema, A. L. A modular estuarine mesocosm. Environ. Toxicol. Chem. 15, 630–637 (1996).

    Article  CAS  Google Scholar 

  8. Walse, S. S., Scott, G. I. & Ferry, J. L. Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms: formation of endosulfan gamma-hydroxycarboxylate. J. Environ. Monitor. 5, 373–379 (2003).

    Article  CAS  Google Scholar 

  9. Walse, S. S., Pennington, P. L., Scott, G. I. & Ferry, J. L. The fate of fipronil in modular estuarine mesocosms. J. Environ. Monitor. 6, 58–64 (2004).

    Article  CAS  Google Scholar 

  10. Bejarano, A. C., Pennintong, P. L., DeLorenzo, M. E. & Chandler, G. T. Atrazine effects on meiobenthic assemblages of a modular estuarine mesocosm. Mar. Pollut. Bull. 50, 1398–1404 (2005).

    Article  CAS  Google Scholar 

  11. Pennington, P. L. et al. The design, construction, operation and maintenance of the replicated modular estuarine mesocosm. NOAA Technical Memorandum NOS NCCOS, 62, 77 (2007).

    Google Scholar 

  12. Murphy, C. J., Gole, A. M., Hunyadi, S. E. & Orendorf, C. J. One dimensional colloidal gold and silver nanostructures. Inorg. Chem. 45, 7544–7554 (2006).

    Article  CAS  Google Scholar 

  13. Sau, T. K., Murphy, C. J. & Murphy, J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20, 6414–6420 (2004).

    Article  CAS  Google Scholar 

  14. Krauskopf, K. B. The solubility of gold. Econ. Geol. 46, 858–870 (1951).

    Article  CAS  Google Scholar 

  15. Falkner, K. K. & Edmond, J. M. Gold in seawater. Earth Planet. Sci. Lett. 98, 208–221 (1990).

    Article  CAS  Google Scholar 

  16. Decho, A. W. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Ann. Rev. 28, 73–153 (1990).

    Google Scholar 

  17. Zhu, H., Han, J., Xiao, J. Q. & Jin, Y. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monitor. 10, 713–717 (2008).

    Article  CAS  Google Scholar 

  18. Navarro, E. et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 17, 372–386 (2008).

    Article  CAS  Google Scholar 

  19. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 622–628 (2006).

    Article  Google Scholar 

  20. Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005).

    Article  CAS  Google Scholar 

  21. Hauck, T. S., Ghazani, A. A. & Chan, W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity and gene expression in mammalian cells. Small 4, 153–159 (2008).

    Article  CAS  Google Scholar 

  22. Lewinski, N., Colvin, V. & Drezek, R. Cytotoxicity of nanoparticles. Small 4, 26–49 (2008).

    Article  CAS  Google Scholar 

  23. Robichaud, C. O., Tanzil, D., Weilenmann, U. & Wiesner, M. R. Relative risk analysis of several manufactured nanomaterials: an insurance industry context. Environ. Sci. Technol. 39, 8985–8994 (2005).

    Article  CAS  Google Scholar 

  24. Pennington, P. L. The replicated modular estuarine mesocosm: assessing direct and indirect effects of pesticide exposure, in Environmental Health Sciences 249 (Univ. South Carolina, 2002).

    Google Scholar 

  25. Price, T. J., Thayer, G. W., LaCroix, M. W. & Montgomery, G. P. Proceedings of the National Shellfisheries Association, in Annual Meeting of the National Shellfisheries Association (Waverly Press, 1976).

    Google Scholar 

  26. Roesijadi, G., Anderson, J. W. & Giam, C. S. Osmoregulation of the grass shrimp Palaemonetes pugio exposed to polychlorinated biphenyls (PCBs) II. Effect on free amino acids of muscle tissue. Mar. Biol. 38, 357–363 (1976).

    Article  CAS  Google Scholar 

  27. Underwood, J. C., Phillips, J. & Saunders, K. Distribution of estuarine benthic diatom species along salinity and nutrient gradients. Eur. J. Phycol. 33, 173–183 (1998).

    Article  Google Scholar 

  28. Nordlie, F. G., Wahl, W. A., Binello, J. & Haney, D. C. Body water content over a range of ambient salinities in the sheepshead minnow. J. Fish Biol. 47, 624–630 (2005).

    Article  Google Scholar 

  29. Wang, J. et al. Exotic Spartina alterniflora provides compatible habitats for native estuarine crab Sesarma dehaani in the Yangtze River estuary. Ecol. Eng. 34, 57–64 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of South Carolina Nanocenter.

Author information

Authors and Affiliations

Authors

Contributions

J.L.F., T.J.S., P.L.P. and M.H.F. conceived and designed the experiment. P.S. and C.J.M. synthesized the nanoparticles. P.C., R.F. and P.L.P. dosed and sampled from the mesocosms. I.G.S., M.H.F. and P.L.P. maintained the mesocosms. C.H., P.C. and T.J.S. digested the samples and performed the ICP-MS analyses. A.W.D. provided biofilm sampling apparatus and procedures. S.K. performed Cyprinodon dissections. J.L.F., C.J.M. and T.J.S. wrote the manuscript. All authors contributed to materials and analysis tools, discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to John L. Ferry.

Supplementary information

Supplementary information

Supplementary information (PDF 1313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferry, J., Craig, P., Hexel, C. et al. Transfer of gold nanoparticles from the water column to the estuarine food web. Nature Nanotech 4, 441–444 (2009). https://doi.org/10.1038/nnano.2009.157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing