Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon nanotube tips for atomic force microscopy

Abstract

The development of atomic force microscopy (AFM) over the past 20 years has had a major impact on materials science, surface science and various areas of biology, and it is now a routine imaging tool for the structural characterization of surfaces. The lateral resolution in AFM is governed by the shape of the tip and the geometry of the apex at the end of the tip. Conventional microfabrication routes result in pyramid-shaped tips, and the radius of curvature at the apex is typically less than 10 nm. As well as producing smaller tips, AFM researchers want to develop tips that last longer, provide faithful representations of complex surface topographies, and are mechanically non-invasive. Carbon nanotubes have demonstrated considerable potential as AFM tips but they are still not widely adopted. This review traces the history of carbon nanotube tips for AFM, the applications of these tips and research to improve their performance.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Preparation of nanotube tips.
Figure 2: Coated nanotube AFM probes.
Figure 3: Topographical demonstrations with nanotube tips.
Figure 4: Nanolithographic writing with a nanotube AFM tip.
Figure 5: Production and application of chemically functionalized nanotube tips.
Figure 6: Schematic of the 'nanoinjection' procedure.

References

  1. Wood, J. The top ten advances in materials science. Mater. Today 11, 40 (2008).

    CAS  Google Scholar 

  2. Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy (Cambridge Univ. Press, 1994).

    Google Scholar 

  3. Ximen, H. & Russell, P. E. Microfabrication of AFM tips using focused ion and electron beam techniques. Ultramicroscopy 42–44, 1526–1532 (1992).

    Google Scholar 

  4. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

    Google Scholar 

  5. Dai, H. et al. Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996).

    CAS  Google Scholar 

  6. Binnig, G., Quate, C. F. & Gerber, Ch. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    CAS  Google Scholar 

  7. Albrecht, T. R., Akamine, S., Carver, T. E. & Quate, C. F. Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. A 8, 3386–3396 (1990).

    CAS  Google Scholar 

  8. Nguyen, C. V., Ye, Q. & Meyyappan, M. Carbon nanotube tips for scanning probe microscopy: fabrication and high aspect ratio nanometrology. Meas. Sci. Technol. 16, 2138–2146 (2005).

    CAS  Google Scholar 

  9. Wong, E. W., Sheehan, P. E. & Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997).

    CAS  Google Scholar 

  10. deJonge, N., Lamy, Y. & Kaiser, M. Controlled mounting of individual multiwalled carbon nanotubes on support tips. Nano Lett. 3, 1621–1624 (2003).

    CAS  Google Scholar 

  11. Martinez, J. et al. Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam. Nanotechnology 16, 2493–2496 (2005).

    CAS  Google Scholar 

  12. Kim, D.-H. et al. Shortening multiwalled carbon nanotube on atomic force microscope tip: Experiments and two possible mechanisms. J. Appl. Phys. 101, 064317 (2007).

    Google Scholar 

  13. Jiang, A. N. et al. Amplitude response of multiwalled carbon nanotube probe with controlled length during tapping mode atomic force microscopy. J. Phys. Chem. C 112, 15631–15636 (2008).

    CAS  Google Scholar 

  14. Nishijima, H. et al. Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid. Appl. Phys. Lett. 74, 4061–4063 (1999).

    CAS  Google Scholar 

  15. Kong, J. et al. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    CAS  Google Scholar 

  16. Kong, J., Cassell, A. M. & Dai, H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567–574 (1998).

    CAS  Google Scholar 

  17. Hafner, J. H. et al. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195–202 (1998).

    CAS  Google Scholar 

  18. Hafner, J. H., Cheung, C. L. & Lieber, C. M. Growth of nanotubes for probe microscopy tips. Nature 398, 761–762 (1999).

    CAS  Google Scholar 

  19. Hafner, J. H., Cheung, C. L. & Lieber, C. M. Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 121, 9750–9751 (1999).

    CAS  Google Scholar 

  20. Yenilmez, E. et al. Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy. Appl. Phys. Lett. 80, 2225–2227 (2002).

    CAS  Google Scholar 

  21. Hafner, J. H., Cheung, C. L. Oosterkamp, T. H. & Lieber, C. M., High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J. Phys. Chem. B 105, 743–746 (2001).

    CAS  Google Scholar 

  22. Zhang, Y. et al. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79, 3155–3157 (2001).

    CAS  Google Scholar 

  23. Ren, Z. F. et al. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75, 1086–1088 (1999).

    CAS  Google Scholar 

  24. Ye, Q. et al. Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications. Nano Lett. 4, 1301–1308 (2004).

    CAS  Google Scholar 

  25. Girifalco, L. A., Hodak, M. & Lee, R. S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62, 13104–13110 (2000).

    CAS  Google Scholar 

  26. Salvetat, J.-P. et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999).

    CAS  Google Scholar 

  27. Wilson, N. R., Cobden, D. H. & Macpherson, J. V. Single-wall carbon nanotube conducting probe tips. J. Phys. Chem. B 106, 13102–13105 (2002).

    CAS  Google Scholar 

  28. Tayebi. N. et al. Nanopencil as a wear-tolerant probe for ultrahigh density storage. Appl. Phys. Lett. 93, 103112 (2008).

    Google Scholar 

  29. Carnally, S. et al. Ultra-resolution imaging of a self-assembling biomolecular system using robust carbon nanotube AFM probes. Langmuir 23, 3906–3911 (2007).

    CAS  Google Scholar 

  30. Snow, E. S., Campbell, P. M. & Novak, J. P. Atomic force microscopy using single-wall C nanotube probes. J. Vac. Sci. Technol. B 20, 822–827 (2002).

    CAS  Google Scholar 

  31. Lin, Y. et al. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14, 527–541 (2004).

    CAS  Google Scholar 

  32. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotubes functionalization. Science 301, 1519–1522 (2003).

    CAS  Google Scholar 

  33. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    CAS  Google Scholar 

  34. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    CAS  Google Scholar 

  35. Keren, K. et al. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003).

    CAS  Google Scholar 

  36. Tang, J. et al. Rapid and reproducible fabrication of carbon nanotube AFM probes by dielectrophoresis. Nano Lett. 5, 11–14 (2005).

    CAS  Google Scholar 

  37. Kim, J. E., Park, J. K. & Han, C. S. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: experimental investigation. Nanotechnology 17, 2937–2941 (2006).

    CAS  Google Scholar 

  38. Wilson, N. R. & Macpherson, J. V. Single-walled carbon nanotubes as templates for nanowire conducting probes. Nano Lett. 3, 1365–1369 (2003).

    CAS  Google Scholar 

  39. Ishikawa, K. & Cho, Y. Using an electroconductive carbon nanotube probe tip in scanning nonlinear dielectric microscopy. Rev. Sci. Instrum. 77, 103708 (2006).

    Google Scholar 

  40. Zhao, M. et al. Ultrasharp and high aspect ratio carbon nanotube atomic force microscopy probes for enhanced surface potential imaging. Nanotechnology 19, 235704 (2008).

    Google Scholar 

  41. Deng, Z. F. et al. Metal-coated carbon nanotube tips for magnetic force microscopy. Appl. Phys. Lett. 85, 6263–6265 (2004).

    CAS  Google Scholar 

  42. Winkler, A. et al. Magnetic force microscopy sensors using iron-filled carbon nanotubes. J. Appl. Phys. 99, 104905 (2006).

    Google Scholar 

  43. Burt, D. P. et al. Nanowire probes for high resolution combined scanning electrochemical microscopy — Atomic force microscopy. Nano Lett. 5, 639–643 (2005).

    CAS  Google Scholar 

  44. Wong, S. S., Woolley, A. T., Joselevich, E. & Lieber, C. M. Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225 (1999).

    CAS  Google Scholar 

  45. Wong, S. S. et al. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998).

    CAS  Google Scholar 

  46. Chen, X., Kis, A., Zettl, A. & Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes. Proc. Natl Acad. Sci. USA 104, 8218–8222 (2007).

    CAS  Google Scholar 

  47. Chen, L., Cheung, C. L., Ashby, P. D. & Lieber, C. M. Single-walled carbon nanotube AFM probes: Optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett. 4, 1725–1731 (2004).

    CAS  Google Scholar 

  48. Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nature Mater. 3, 38–42 (2004).

    CAS  Google Scholar 

  49. Woolley, A. T., Cheung, C. L., Hafner, J. H. & Lieber, C. M. Structural biology with carbon nanotube AFM probes. Chem. Biol. 7, R193–R204 (2000).

    CAS  Google Scholar 

  50. Chen. L., Haushalter, K. A., Lieber, C. M. & Verdine, G. L. Direct visualization of a DNA glycosylase searching for damage. Chem. Biol. 9, 345–350 (2002).

    CAS  Google Scholar 

  51. Wong, S. S. et al. Single-walled carbon nanotube probes for high-resolution nanostructure imaging. Appl. Phys. Lett. 73, 3465–3467 (1998).

    CAS  Google Scholar 

  52. Cheung, C. L., Hafner, J. H. & Lieber, C. M. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl Acad. Sci. USA 97, 3809–3813 (2000).

    CAS  Google Scholar 

  53. Harper, J. D., Wong, S. S., Lieber, C. M. & Lansbury, P. T. Assembly of A beta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer's disease. Biochemistry 38, 8972–8980 (1999).

    CAS  Google Scholar 

  54. Moloni, K., Buss, M. R. & Andres, R. P. Tapping mode scanning force microscopy in water using a carbon nanotube probe. Ultramicroscopy 80, 237–246 (1999).

    CAS  Google Scholar 

  55. Jarvis, S. P. et al. Local solvation shell measurement in water using a carbon nanotube probe. J. Phys. Chem. B 104, 6091–6094 (2000).

    CAS  Google Scholar 

  56. Stevens, R. M., Nguyen, C. V. & Meyyappan, M. Carbon nanotube scanning probe for imaging in aqueous environment. IEEE Trans. Nanobiosci. 3, 56–60 (2004).

    Google Scholar 

  57. Larsen, T. et al. Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes. Appl. Phys. Lett. 80, 1996–1998 (2002).

    CAS  Google Scholar 

  58. Nguyen, C. et al. Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and applications to surface science in semiconductors. Nanotechnology 12, 363–367 (2001).

    CAS  Google Scholar 

  59. Wade, L. A. et al. Correlating AFM probe morphology to image resolution for single-wall carbon nanotube tips. Nano Lett. 4, 725–731 (2004).

    CAS  Google Scholar 

  60. Nguyen, C. V. et al. Carbon nanotube scanning probe for profiling of deep-ultraviolet and 193 nm photoresist patterns. Appl. Phys. Lett. 81, 901–903 (2002).

    CAS  Google Scholar 

  61. Stevens, R. et al. Improved fabrication approach for carbon nanotube probe devices. Appl. Phys. Lett. 77, 3453–3455 (2000).

    CAS  Google Scholar 

  62. Solares, S. D. Characterization of deep nanoscale surface trenches with AFM using thin carbon nanotube probes in amplitude modulation and frequency-force-modulation modes. Meas. Sci. Technol. 19, 015503 (2008).

    Google Scholar 

  63. Kutana, A., Giapis, K. P., Chen, J. Y. & Collier, C. P. Amplitude response of single-wall carbon nanotube probes during tapping mode atomic force microscopy: Modeling and experiment. Nano Lett. 6, 1669–1673 (2006).

    CAS  Google Scholar 

  64. Solares, S. D., Esplandiu, M. J., Goddard, W. A. & Collier, C. P. Mechanism of single walled carbon nanotube probe sample multistability in tapping mode AFM imaging. J. Phys. Chem. B 109, 11493–11500 (2005).

    CAS  Google Scholar 

  65. Shapiro, I. R. et al. Influence of elastic deformation on single-wall carbon nanotube atomic force microscopy probe resolution. J. Phys. Chem. B 108, 13613–13618 (2004).

    CAS  Google Scholar 

  66. Solares, S. D., Matsuda, Y. & Goddard, W. A. Influence of the carbon nanotube probe tilt angle on the effective probe stiffness and image quality in tapping-mode atomic force microscopy. J. Phys. Chem. B 109, 16658–16664 (2005).

    CAS  Google Scholar 

  67. Ishikawa, K., Honda, K. & Yasuo. C. Resolution enhancement in contact-type scanning nonlinear dielectric microscopy using a conductive carbon nanotube probe tip. Nanotechnology 18, 084015 (2007).

    Google Scholar 

  68. Martin, Y., Abraham, D. W. & Wickramasinghe, H. K. High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988).

    Google Scholar 

  69. Wilson, N. R. & Macpherson, J. V., Enhanced resolution electric force microscopy with single-wall carbon nanotube tips. J. Appl. Phys. 96, 3565–3567 (2004).

    CAS  Google Scholar 

  70. Arnason, S. B., Rinzler, A. G., Hudspeth, Q. & Hebard, A. F. Carbon nanotube-modified cantilevers for improved spatial resolution in electrostatic force microscopy. Appl. Phys. Lett. 75, 2842–2844 (1999).

    CAS  Google Scholar 

  71. Arie, T. Nishijima, H., Akita, S. & Nakayama, Y. Carbon-nanotube probe equipped magnetic force microscope. J. Vac. Sci. Tech. B 18, 104–106 (2000).

    CAS  Google Scholar 

  72. Kalinin, S. & Gruverman, A. Scanning Probe Microscopy Electrical and Electrochemical Phenomena at the Nanoscale: Fundamentals and Applications (Springer, 2007).

    Google Scholar 

  73. Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Technol. B 23, 877–894 (2005).

    CAS  Google Scholar 

  74. Cooper, E. B. et al. Tetrabit-per-square-inch data storage with the atomic force microscope. Appl. Phys. Lett. 75, 3566–3568 (1999).

    CAS  Google Scholar 

  75. Austin, A. J. & Nguyen, C. Electrical conduction of carbon nanotube atomic force microscopy tips: Application in nanofabrication. J. Appl. Phys. 99, 114304 (2006).

    Google Scholar 

  76. Kuramochi, H., Tokizaki, T., Yokoyama, H & Dagata, J. A. Why nano-oxidation with carbon nanotube probes is so stable: I. Linkage between hydrophobicity and stability. Nanotechnology 18, 135703 (2007).

    CAS  Google Scholar 

  77. Dai, H., Franklin, N. & Han, J. Exploiting the properties of carbon nanotubes for lithography. Appl. Phys. Lett. 73, 1508–1510 (1998).

    CAS  Google Scholar 

  78. Jian, S.-R. & Juang, J.-Y. Scanned probe oxidation of p-GaAs(100) surface with an atomic force microscopy. Nanoscale Res. Lett. 3, 249–254 (2008).

    CAS  Google Scholar 

  79. Kuramochi, H. et al. Nano-oxidation and in situ faradaic current detection using dynamic carbon nanotube probes. Nanotechnology 15, 1126–1130 (2004).

    CAS  Google Scholar 

  80. Park, J. G., Zhang, C., Liang, R. & Wang, B. Nano-machining of highly orientated pyrolytic graphite using conductive atomic force microscope tips and carbon nanotubes. Nanotechnology 18, 405306 (2007).

    Google Scholar 

  81. Gotoh, Y., Matsumoto, K. & Maeda, T. Room temperature coulomb diamond characteristic of single electron. Transistor made by AFM nano-oxidation process. Jpn J. Appl. Phys. 41, 2578–2582 (2002).

    CAS  Google Scholar 

  82. Noy, A. Chemical force microscopy of chemical and biological interactions. Surf. Interf. Anal. 38, 1429–1441 (2006).

    CAS  Google Scholar 

  83. Vakarelski, I. U., Brown, S. C., Higashitani, K. & Moudgil, B. M. Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 23, 10893–10896 (2007).

    CAS  Google Scholar 

  84. Gardner, C. E. & Macpherson, J. V. Atomic force microscopy probes go electrochemical. Anal. Chem. 74, 576A–584A (2002).

    Google Scholar 

  85. Patil, A., Sippel, J., Martin, G. W. & Rinzler, A. G. Enhanced functionality of nanotube atomic force microscopy tips by polymer coating. Nano Lett. 4, 303–308 (2004).

    CAS  Google Scholar 

  86. Esplandiu, M. J., Bittner, V. G., Giapis, K. P. & Collier, C. P. Nanoelectrode scanning probes from fluorocarbon-coated single-walled carbon nanotubes. Nano Lett. 4, 1873–1879 (2004).

    Google Scholar 

  87. Narui, Y., Ceres, D. M., Chen, J., Giapis, K. P. & Collier, C. P. High aspect ratio silicon dioxide coated single walled carbon nanotube scanning probe nanoelectrodes, J. Phys. Chem. C 113, 6815–6820 (2009).

    CAS  Google Scholar 

  88. Burt. et al. Developments in nanowire scanning electrochemical atomic force microscopy (SECM-AFM) probes. IEEE Sensors 1–3, 712–715 (2007).

    Google Scholar 

  89. Wilson, N. R. Electronic Transport in Single Walled Carbon Nanotubes and Their Application as Scanning Probe Microscopy Tips. PhD Thesis, Univ. Warwick (2004).

    Google Scholar 

  90. Jaroenapibal, P., Luzzi, D. E., Evoy, S. & Arepalli, S. Transmission-electron-microscopic studies of mechanical properties of single-walled carbon nanotube bundles. Appl. Phys. Lett. 85, 4328–4330 (2004).

    CAS  Google Scholar 

  91. Valcarcel, V., Cardenas, S. & Simonet, B. M. Role of carbon nanotubes in analytical science. Anal. Chem. 79, 4788–4797 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie V. Macpherson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilson, N., Macpherson, J. Carbon nanotube tips for atomic force microscopy. Nature Nanotech 4, 483–491 (2009). https://doi.org/10.1038/nnano.2009.154

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.154

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research