Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

Abstract

Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core–shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood–brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Peptide structure and formation of peptide nanoparticles.
Figure 2: Dose-dependent growth inhibition of Bacillus subtilis, Cryptococcus neoformans and Stachybotrys chartarum.
Figure 3: Dose-dependent haemolytic activity of peptide nanoparticles compared with that of amphotericin B.
Figure 4: Morphological studies of microorganisms before and after treatment with CG3R6TAT nanoparticles.
Figure 5: A possible mechanism of antimicrobial nanoparticle activity.
Figure 6: Therapeutic effects of CG3R6TAT nanoparticles on S.aureus-induced meningitis rabbits.

References

  1. Obermaier, B., Klein, M., Koedel, U. & Pfister, H. W. Disease models of acute bacterial meningitis. Drug Discov. Today 3, 105–112 (2006).

    Article  Google Scholar 

  2. Ewald, C., Kuhn, S. & Kalff, R. Pyogenic infection of the central nervous system secondary to dental affection—a report of six cases. Neurosurg. Rev. 29, 163–167 (2006).

    Article  CAS  Google Scholar 

  3. Bert, F., Ouahes, O. & Lambert-Zechovsky, N. Brain abscess due to Bacillus macerans following a penetration periorbital injury. J. Clin. Microbiol. 33, 1950–1953 (1995).

    CAS  Google Scholar 

  4. Jafari, H. S. et al. Effects of antifungal therapy on inflammation, sterilization and histology in experimental Candida albicans meningitis. Antimicrob. Agents Chemother. 38, 83–89 (1994).

    Article  CAS  Google Scholar 

  5. Casado, J. L. et al. Candidal meningitis in HIV-infected patients: analysis of 14 cases. Clin. Infect. Dis. 25, 673–676 (1997).

    Article  CAS  Google Scholar 

  6. Islam, Z., Harkema, J. R. & Pestka, J. J. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neurons loss and inflammation in the murine nose and brain. Environ. Health Perspect. 114, 1099–1107 (2006).

    Article  CAS  Google Scholar 

  7. Hancock, R. E. W. & Sahl, H. G. Antimicrobial and host-defence peptides as new anti-infective therapeutic strategies. Nature Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  Google Scholar 

  8. Oren, Z. et al. Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR and fluorescence spectroscopy. Eur. J. Biochem. 269, 3869–3880 (2002).

    Article  CAS  Google Scholar 

  9. Oren, Z. & Shai, Y. Cyclization of a cytolytic amphipathic α-helical peptide and its diastereomer: effect on structure, interaction with model membranes and biological function. Biochemistry 39, 6103–6114 (2000).

    Article  CAS  Google Scholar 

  10. Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers (Pept. Sci.) 66, 236–248 (2002).

    Article  CAS  Google Scholar 

  11. Fernandez-Lopez, S. et al. Antibacterial agents based on the cyclic d,l-α-peptide architecture. Nature 412, 452–455 (2001).

    Article  CAS  Google Scholar 

  12. Avrahami, D. & Shai, Y. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly and cell selectivity. Biochemistry 41, 2254–2263 (2002)

    Article  CAS  Google Scholar 

  13. Vives, E., Brodin, P. & Lebleu, B. A truncated HIV-1 TAT protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997).

    Article  CAS  Google Scholar 

  14. Ho, A., Schwarze, S. R., Mermelstein, S. J., Waksman, G. & Dowdy, S. F. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 61, 474–477 (2001).

    CAS  Google Scholar 

  15. Fawell, S. et al. TAT-mediated delivery of heterologous proteins into cells. Proc. Natl Acad. Sci. USA 91, 664–668 (1994).

    Article  CAS  Google Scholar 

  16. Turner, J. J. et al. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol. Dis. 38, 1–7 (2007).

    Article  CAS  Google Scholar 

  17. Pappalardo, J. S. et al. Improved transfection of spleen-derived antigen-presenting cells in culture using TATp-liposomes. J. Control. Rel. 134, 41–46 (2009).

    Article  CAS  Google Scholar 

  18. Schwarze, S. R., Ho, A., Vocero-Akbani, A. & Dowdy, S. F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  Google Scholar 

  19. Santra, S. et al. Rapid and effective labeling of brain tissue using TAT-conjugated CdS: Mn/ZnS quantum dots. Chem. Commun. 25, 3144–3146 (2005).

    Article  Google Scholar 

  20. Liu, L. H. et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials 29, 1509–1517 (2008).

    Article  CAS  Google Scholar 

  21. Futaki, S. et al. Arginine rich peptides: an abundant source of membrane permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840 (2001).

    Article  CAS  Google Scholar 

  22. Wender, P. A. et al. The design, synthesis and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl Acad. Sci. USA 97, 13003–13008 (2000).

    Article  CAS  Google Scholar 

  23. Weiss, R. G. Thermotropic liquid crystals as reaction media for mechanistic investigations. Tetrahedron 44, 3413–3475 (1988).

    Article  CAS  Google Scholar 

  24. Lee, M., Rentz, J., Han, S.-O., Bull, D. A. & Kim, S. W. Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Therapy 10, 585–593 (2003).

    Article  CAS  Google Scholar 

  25. Li, C., Peters, A. S., Meredith, E. L., Allman, G. W. & Savage, P. B. Design and synthesis of potent sensitizers of gram-negative bacteria based on a cholic acid scaffolding. J. Am. Chem. Soc. 120, 2961–2962 (1998).

    Article  CAS  Google Scholar 

  26. Dai, S., Ravi, P., Leong, C. Y., Tam, K. C. & Gan, L. H. Synthesis and aggregation behavior of amphiphilic block copolymers in aqueous solution: di- and tri-block copolymers of poly(ethylene oxide) and poly(ethyl acrylate). Langmuir 20, 1597–1604 (2004).

    Article  CAS  Google Scholar 

  27. Whittaker, M. R., Urbani, C. N. & Monteiro, M. J. Synthesis of linear and 4-arm star block copolymers of poly(methyl acrylate-b-solketal acrylate) by SET–LRP at 25 °C. J. Polym. Sci. A 46, 6346–6357 (2008).

    Article  CAS  Google Scholar 

  28. Jung, H. J., Park, Y., Hahm, K. S. & Lee, D. G. Biological activity of TAT (47–58) peptide on human pathogenic fungi. Biochem. Biophys. Res. Commun. 345, 222–228 (2006).

    Article  CAS  Google Scholar 

  29. Hyde, A. J., Parisot, J., McNichol, A. & Bonev, B. B. Nisin-induced changes in Bacillus morphology suggest a paradigm of antibiotic action. Proc. Natl Acad. Sci. USA 103, 19896–19901 (2006).

    Article  CAS  Google Scholar 

  30. Cho, S. et al. Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins. Proc. Natl. Acad. Sci. USA 104, 8761–8766 (2007).

    Article  CAS  Google Scholar 

  31. Chan, D. I., Prenner, E. J. & Vogel, H. J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta 1758, 1184–1202 (2006).

    Article  CAS  Google Scholar 

  32. Neuwelt, E. A. Mechanisms of disease: the blood–brain barrier. Neurosurgery 54, 131–141 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Lu, K. Guo and S. Liu for helpful discussions. The authors are also grateful to the Clinical Testing Center, College of Medicine, Zhejiang University, P.R. China, for analysis of ALT, AST, total bilirubin, direct bilirubin, creatinine and urea nitrogen levels of the blood samples. This work was funded by the Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, the National Basic Research Program 973 of P.R. China (grant no. 2007cb513003) and the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, Zhejiang University, P.R. China (grant no. 2008A05).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y.Y. oversaw the project. Y.Y.Y. and L. Liu designed the peptides and peptide nanoparticles. L. Liu and J.T.P.K. synthesized and characterized the peptide nanoparticles. L. Liu, K.X. and H.W. performed the in vitro experiments. L.L., K.X., H.W. and W.F. contributed to the in vivo experiments and data analysis. Y.Y.Y. wrote the paper with contributions from L. Liu. The other authors gave suggestions to improve the presentation of the paper and prepared the Methods section.

Corresponding authors

Correspondence to Lanjuan Li or Yi-Yan Yang.

Supplementary information

Supplementary information

Supplementary information (PDF 1271 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, L., Xu, K., Wang, H. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nature Nanotech 4, 457–463 (2009). https://doi.org/10.1038/nnano.2009.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.153

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research