Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Continuous base identification for single-molecule nanopore DNA sequencing


A single-molecule method for sequencing DNA that does not require fluorescent labelling could reduce costs and increase sequencing speeds. An exonuclease enzyme might be used to cleave individual nucleotide molecules from the DNA, and when coupled to an appropriate detection system, these nucleotides could be identified in the correct order. Here, we show that a protein nanopore with a covalently attached adapter molecule can continuously identify unlabelled nucleoside 5'-monophosphate molecules with accuracies averaging 99.8%. Methylated cytosine can also be distinguished from the four standard DNA bases: guanine, adenine, thymine and cytosine. The operating conditions are compatible with the exonuclease, and the kinetic data show that the nucleotides have a high probability of translocation through the nanopore and, therefore, of not being registered twice. This highly accurate tool is suitable for integration into a system for sequencing nucleic acids and for analysing epigenetic modifications.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structures of haemolysin mutants.
Figure 2: Single-channel recordings comparing permanent and transient adapters.
Figure 3: Nucleotide event distributions with the permanent adapter.
Figure 4: Nucleotide dwell times and kinetics with a permanent adapter.
Figure 5: Detection of methyl-dCMP.
Figure 6: Detection of nucleotides cleaved from ssDNA by exonuclease I.


  1. Bayley, H. Sequencing single molecules of DNA. Curr. Opin. Chem. Biol. 10, 628–637 (2006).

    CAS  Article  Google Scholar 

  2. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    CAS  Article  Google Scholar 

  3. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    CAS  Article  Google Scholar 

  4. Deamer, D. W. & Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    CAS  Article  Google Scholar 

  5. Ashkenasy, N., Sanchez-Quesada, J., Bayley, H. & Ghadiri, M. R. Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew Chem. Int. Ed. Engl. 44, 1401–1404 (2005).

    CAS  Article  Google Scholar 

  6. Mitchell, N. & Howorka, S. Chemical tags facilitate the sensing of individual DNA strands with nanopores. Angew Chem. Int. Ed. Engl. 47, 5565–5568 (2008).

    CAS  Article  Google Scholar 

  7. Astier, Y., Kainov, D. E., Bayley, H., Tuma, R. & Howorka, S. Stochastic detection of motor protein–RNA complexes by single-channel current recording. Chem. Phys. Chem. 8, 2189–2194 (2007).

    CAS  Article  Google Scholar 

  8. Hornblower, B. et al. Single-molecule analysis of DNA–protein complexes using nanopores. Nature Methods 4, 315–317 (2007).

    CAS  Article  Google Scholar 

  9. Cockroft, S. L., Chu, J., Amorin, M. & Ghadiri, M. R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).

    CAS  Article  Google Scholar 

  10. Maglia, G., Restrepo, M. R., Mikhailova, E. & Bayley, H. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl Acad. Sci. USA 105, 19720–19725 (2008).

    CAS  Article  Google Scholar 

  11. Jett, J. H. et al. High-speed DNA sequencing: an approach based upon fluorescence detection of single molecules. J. Biomol. Struct. Dyn. 7, 301–309 (1989).

    CAS  Article  Google Scholar 

  12. Sauer, M. et al. Single molecule DNA sequencing in submicrometer channels: state of the art and future prospects. J. Biotechnol. 86, 181–201 (2001).

    CAS  Article  Google Scholar 

  13. Stephan, J. et al. Towards a general procedure for sequencing single DNA molecules. J. Biotechnol. 86, 255–267 (2001).

    CAS  Article  Google Scholar 

  14. Werner, J. H. et al. Progress towards single-molecule DNA sequencing: a one color demonstration. J. Biotechnol. 102, 1–14 (2003).

    CAS  Article  Google Scholar 

  15. Werner, J. H., Cai, H., Keller, R. A. & Goodwin, P. M. Exonuclease I hydrolyzes DNA with a distribution of rates. Biophys. J. 88, 1403–1412 (2005).

    CAS  Article  Google Scholar 

  16. Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    CAS  Article  Google Scholar 

  17. Cheley, S., Gu, L. Q. & Bayley, H. Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem. Biol. 9, 829–838 (2002).

    CAS  Article  Google Scholar 

  18. Shin, S. H., Luchian, T., Cheley, S., Braha, O. & Bayley, H. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew Chem. Int. Ed. Engl. 41, 3707–3709, 3523 (2002).

    CAS  Article  Google Scholar 

  19. Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    CAS  Article  Google Scholar 

  20. Astier, Y., Braha, O. & Bayley, H. Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc. 128, 1705–1710 (2006).

    CAS  Article  Google Scholar 

  21. Brody, R. S., Doherty, K. G. & Zimmerman, P. D. Processivity and kinetics of the reaction of exonuclease I from Escherichia coli with polydeoxyribonucleotides. J. Biol. Chem. 261, 7136–7143 (1986).

    CAS  Google Scholar 

  22. Enderlein, J. Nucleotide specificity versus complex heterogeneity in exonuclease activity measurements. Biophys. J. 92, 1556–1558 (2007).

    CAS  Article  Google Scholar 

  23. Cheley, S., Braha, O., Lu, X., Conlan, S. & Bayley, H. A functional protein pore with a ‘retro’ transmembrane domain. Protein Sci. 8, 1257–1267 (1999).

    CAS  Article  Google Scholar 

  24. Song, L. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    CAS  Article  Google Scholar 

  25. Gu, L. Q., Cheley, S. & Bayley, H. Capture of a single molecule in a nanocavity. Science 291, 636–640 (2001).

    CAS  Article  Google Scholar 

  26. Wu, H. C., Astier, Y., Maglia, G., Mikhailova, E. & Bayley, H. Protein nanopores with covalently attached molecular adapters. J. Am. Chem. Soc. 129, 16142–16148 (2007).

    CAS  Article  Google Scholar 

  27. Sanchez-Quesada, J., Ghadiri, M. R., Bayley, H. & Braha, O. Cyclic peptides as molecular adapters for a pore-forming protein. J. Am. Chem. Soc. 122, 11757–11766 (2000).

    CAS  Article  Google Scholar 

  28. Brena, R. M., Huang, T. H. & Plass, C. Toward a human epigenome. Nature Genet. 38, 1359–1360 (2006).

    CAS  Article  Google Scholar 

  29. Schaefer, C. B., Ooi, S. K., Bestor, T. H. & Bourc'his, D. Epigenetic decisions in mammalian germ cells. Science 316, 398–399 (2007).

    CAS  Article  Google Scholar 

  30. Ooi, S. K. & Bestor, T. H. The colorful history of active DNA demethylation. Cell 133, 1145–1148 (2008).

    CAS  Article  Google Scholar 

  31. Hayatsu, H. The bisulfite genomic sequencing used in the analysis of epigenetic states, a technique in the emerging environmental genotoxicology research. Mutat. Res. 659, 77–82 (2008).

    CAS  Article  Google Scholar 

  32. Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnol. 19, 636–639 (2001).

    CAS  Article  Google Scholar 

Download references


The authors would like to thank O. Braha, S. Cheley, T. Reid and G. Sanghera for valuable discussion, S. Lewis for cyclodextrin preparation and analysis, M. Crawford, G. Hall and L. Woodward for nanopore testing, J. Kilgour and J. White for protein production, Z. McDougall for assistance with the manuscript, and all the staff at ONT. This work was supported by grants from the NIH, the European Commission's seventh Framework Programme (FP7) READNA Consortium and Oxford Nanopore Technologies. H.B. is the holder of a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations



J.C. and H.B. conceived the experiments and wrote the manuscript. J.C. designed the mutant constructs and analysed the data. H.W. designed and synthesized the cyclodextrin. L.J. engineered the proteins. A.P. performed the single-channel recordings. S.R. wrote data analysis algorithms and software.

Corresponding author

Correspondence to Hagan Bayley.

Ethics declarations

Competing interests

H.B. is the founder, a director and a shareholder of Oxford Nanopore Technologies Ltd, a company engaged in the development of nanopore sequencing technology. J.C., L.J., A.P. and S.R. are employees of Oxford Nanopore Technologies Ltd.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1892 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clarke, J., Wu, HC., Jayasinghe, L. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotech 4, 265–270 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research