Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanically controlled binary conductance switching of a single-molecule junction


Molecular-scale components are expected to be central to the realization of nanoscale electronic devices1,2,3. Although molecular-scale switching has been reported in atomic quantum point contacts4,5,6, single-molecule junctions provide the additional flexibility of tuning the on/off conductance states through molecular design. To date, switching in single-molecule junctions has been attributed to changes in the conformation or charge state of the molecule7,8,9,10,11,12. Here, we demonstrate reversible binary switching in a single-molecule junction by mechanical control of the metal–molecule contact geometry. We show that 4,4'-bipyridine–gold single-molecule junctions can be reversibly switched between two conductance states through repeated junction elongation and compression. Using first-principles calculations, we attribute the different measured conductance states to distinct contact geometries at the flexible but stable nitrogen–gold bond: conductance is low when the N–Au bond is perpendicular to the conducting π-system, and high otherwise. This switching mechanism, inherent to the pyridine–gold link, could form the basis of a new class of mechanically activated single-molecule switches.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Statistical analysis of measured conductance traces.
Figure 2: Controlled conductance switching by mechanical manipulation of gold–gold distances.
Figure 3: Calculated transmission characteristics as a function of the angle between the nitrogen–gold bond and the π*-system.
Figure 4: Results from conductance calculations on 55 relaxed junctions.


  1. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    CAS  Article  Google Scholar 

  2. Mathur, N. Nanotechnology—Beyond the silicon roadmap. Nature 419, 573–575 (2002).

    CAS  Article  Google Scholar 

  3. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    CAS  Article  Google Scholar 

  4. Smith, D. P. E. Quantum point-contact switches. Science 269, 371–373 (1995).

    CAS  Article  Google Scholar 

  5. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    CAS  Article  Google Scholar 

  6. Xie, F. Q., Nittler, L., Obermair, C. & Schimmel, T. Gate-controlled atomic quantum switch. Phys. Rev. Lett. 93, 128303 (2004).

    Article  Google Scholar 

  7. Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).

    CAS  Article  Google Scholar 

  8. Chen, F. et al. A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5, 503–506 (2005).

    CAS  Article  Google Scholar 

  9. Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2005).

    CAS  Article  Google Scholar 

  10. Lortscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    CAS  Article  Google Scholar 

  11. Li, X. L. et al. Controlling charge transport in single molecules using electrochemical gate. Faraday Discussions 131, 111–120 (2006).

    Article  Google Scholar 

  12. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    CAS  Article  Google Scholar 

  13. Xu, B. Q. & Tao, N. J. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Article  Google Scholar 

  14. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    CAS  Article  Google Scholar 

  15. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    CAS  Article  Google Scholar 

  16. Park, Y. S. et al. Contact chemistry and single molecule conductance: A comparison of phosphines, methyl sulfides and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007).

    CAS  Article  Google Scholar 

  17. Zhou, X. S. et al. Single molecule conductance of dipyridines with conjugated ethene and nonconjugated ethane bridging group. J. Phys. Chem. C 112, 3935–3940 (2008).

    CAS  Article  Google Scholar 

  18. Yanson, A. I., Bollinger, G. R., van den Brom, H. E., Agrait, N. & van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).

    CAS  Article  Google Scholar 

  19. Stadler, R., Thygesen, K. S. & Jacobsen, K. W. Forces and conductances in a single-molecule bipyridine junction. Phys. Rev. B 72, 241401 (2005).

    Article  Google Scholar 

  20. Perez-Jimenez, A. J. Uncovering transport properties of 4,4′-bipyridine/gold molecular nanobridges. J. Phys. Chem. B 109, 10052–10060 (2005).

    CAS  Article  Google Scholar 

  21. Hu, Y. B., Zhu, Y., Gao, H. J. & Guo, H. Conductance of an ensemble of molecular wires: A statistical analysis. Phys. Rev. Lett. 95, 156803 (2005).

    Article  Google Scholar 

  22. Quek, S. Y. et al. Amine-gold linked single-molecule junctions: Experiment and theory. Nano Lett. 7, 3477–3482 (2007).

    CAS  Article  Google Scholar 

  23. Hybertsen, M. S. et al. Amine-linked single-molecule circuits: systematic trends across molecular families. J. Phys. Condens. Matter 20, 374115 (2008).

    Article  Google Scholar 

  24. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  25. Choi, H. J., Marvin, L. C. & Steven, G. L. First-principles scattering-state approach for nonlinear electrical transport in nanostructures. Phys. Rev. B 76, 155420 (2007).

    Article  Google Scholar 

  26. Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal–molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    CAS  Article  Google Scholar 

  27. Koentopp, M., Burke, K. & Evers, F. Zero-bias molecular electronics: Exchange-correlation corrections to Landauer's formula. Phys. Rev. B 73, 121403 (2006).

    Article  Google Scholar 

  28. Toher, C. & Sanvito, S. Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport. Phys. Rev. Lett. 99, 056801 (2007).

    CAS  Article  Google Scholar 

  29. Ke, S. H., Baranger, H. U. & Yang, W. T. Role of the exchange-correlation potential in ab initio electron transport calculations. J. Chem. Phys. 126, 201102 (2007).

    Article  Google Scholar 

Download references


We thank C. Wiggins and P. Kim for discussions. Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and were supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy. This work was supported in part by the Nanoscale Science and Engineering Initiative of the NSF (award numbers CHE-0117752 and CHE-0641532), the New York State Office of Science, Technology and Academic Research (NYSTAR) and the NSF Career Award (CHE-07-44185) (M.K. and L.V.). This work was supported in part by the US Department of Energy, Office of Basic Energy Sciences, under contract number DE-AC02-98CH10886 (M.S.H.). H.J.C. acknowledges support from KISTI Supercomputing Center (KSC-2007-S00-1011). Computational resources from NERSC are acknowledged.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to J. B. Neaton or Latha Venkataraman.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1624 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quek, S., Kamenetska, M., Steigerwald, M. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech 4, 230–234 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research