Functionalized graphene sheets for polymer nanocomposites

Abstract

Polymer-based composites were heralded in the 1960s as a new paradigm for materials. By dispersing strong, highly stiff fibres in a polymer matrix, high-performance lightweight composites could be developed and tailored to individual applications1. Today we stand at a similar threshold in the realm of polymer nanocomposites with the promise of strong, durable, multifunctional materials with low nanofiller content2,3,4,5,6,7,8,9,10,11. However, the cost of nanoparticles, their availability and the challenges that remain to achieve good dispersion pose significant obstacles to these goals. Here, we report the creation of polymer nanocomposites with functionalized graphene sheets, which overcome these obstacles and provide superb polymer–particle interactions. An unprecedented shift in glass transition temperature of over 40 °C is obtained for poly(acrylonitrile) at 1 wt% functionalized graphene sheet, and with only 0.05 wt% functionalized graphene sheet in poly(methyl methacrylate) there is an improvement of nearly 30 °C. Modulus, ultimate strength and thermal stability follow a similar trend, with values for functionalized graphene sheet– poly(methyl methacrylate) rivaling those for single-walled carbon nanotube–poly(methyl methacrylate) composites.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Microscopy images showing the wrinkled nature of functionalized graphene sheets.
Figure 2: Property improvements for 1 wt% nanoparticle–PMMA composites and microscopy revealing nanoparticle–polymer interaction.
Figure 3: Percent increment in Tg for FGS–PMMA, EG–PMMA and SWNT–PMMA nanocomposites (averages of five samples each; error bars for standard deviation are shown) compared to best available data for similar carbon-based nanofilled polymers (see Supplementary Information, Table S2).

References

  1. 1

    Keller, T. Recent all-composite and hybrid fiber reinforced polymer bridges and buildings. Prog. Struct. Eng. Mater. 3, 132–140 (2001).

    Article  Google Scholar 

  2. 2

    Ajayan, P. M., Schadler, L. S., Giannaris, C. & Rubio, A. Single-walled carbon nanotube–polymer composites: Strength and weakness. Adv. Mater. 12, 750–753 (2000).

    Article  Google Scholar 

  3. 3

    Thostenson, E. T., Ren, Z. F. & Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: a review. Comp. Sci. Tech. 61, 1899–1912 (2001).

    Article  Google Scholar 

  4. 4

    Zheng, W. & Wong, S. C. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Comp. Sci. Tech. 63, 225–235 (2003).

    Article  Google Scholar 

  5. 5

    Zheng, W., Lu, X. H. & Wong, S. C. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 91, 2781–2788 (2004).

    Google Scholar 

  6. 6

    Ramanathan, T., Liu, H., and Brinson, L. C. Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci. B: Polym. Phys. 43, 2269–2279 (2005).

    Article  Google Scholar 

  7. 7

    Ray, S. S. & Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003).

    Google Scholar 

  8. 8

    Zhu, J. et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 3, 1107–1113 (2003).

    Google Scholar 

  9. 9

    Kim, B., Lee, J. & Yu, I. S. Electrical properties of single-wall carbon nanotube and epoxy composites. J. Appl. Phys. 94, 6724–6728 (2003).

    Google Scholar 

  10. 10

    Cho, D., Lee, S., Yang, G. M., Fukushima, H. & Drzal, L. T. Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol. Mater. Eng. 290, 179–187 (2005).

    Article  Google Scholar 

  11. 11

    Usuki, A., Hasegawa, N. & Kato, M. Polymer–clay nanocomposites. Adv. Polym. Sci. 179, 135–195 (2005).

    Google Scholar 

  12. 12

    Ramanathan, T. et al. Graphitic nanofillers in PMMA nanocomposites—an investigation of particle size and dispersion and their influence on nanocomposite properties. J. Polym. Sci. B: Polym. Phys. 45, 2097–2112 (2007).

    Article  Google Scholar 

  13. 13

    Harmandaris, V. A., Daoulas, K. C. & Mavrantzas, V. G. Molecular dynamics simulation of a polymer melt/solid interface: Local dynamics and chain mobility in a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38, 5796–5809 (2005).

    Article  Google Scholar 

  14. 14

    Lin, E. K., Wu, W. I. & Satija, S. K. Polymer interdiffusion near an attractive solid substrate. Macromolecules 30, 7224–7231 (1997).

    Google Scholar 

  15. 15

    Starr, F. W., Schroder, T. B. & Glotzer, S. C. Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 35, 4481–4492 (2002).

    Article  Google Scholar 

  16. 16

    Desai, T., Keblinski, P. & Kumar, S. K., Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys. 122, 134910 (2005).

    Article  Google Scholar 

  17. 17

    Bansal, A. et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater. 4, 693–698 (2005).

    Article  Google Scholar 

  18. 18

    Moniruzzaman, M. & Winey, K. I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006).

    Article  Google Scholar 

  19. 19

    Fiedler, B., Gojny, F. H., Wichmann, M. H. G., Nolte, M. C. M. & Schulte, K., Fundamental aspects of nano-reinforced composites. Comp. Sci. Tech. 66, 3115–3125 (2006).

    Google Scholar 

  20. 20

    Kelly, B. T. Physics of Graphite (Applied Science, London, 1981).

    Google Scholar 

  21. 21

    Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  Google Scholar 

  22. 22

    Kotov, N. A. Materials science: Carbon sheet solutions. Nature 442, 254–255 (2006).

    Article  Google Scholar 

  23. 23

    Schniepp, H. C. et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).

    Article  Google Scholar 

  24. 24

    McAllister, M. J. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007).

    Article  Google Scholar 

  25. 25

    Duplock, E. J., Scheffler, M. & Lindan, P. J. D. Hallmark of perfect graphene. Phys. Rev. Lett. 92, 225502 (2004).

    Article  Google Scholar 

  26. 26

    Smith, G. D., Bedrov, D., Li, L. W. & Byutner, O. A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J. Chem. Phys. 117, 9478–9489 (2002).

    Google Scholar 

  27. 27

    Rittigstein, P., Priestley, R. D., Broadbelt, L. J. & Torkelson J. M. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nature Mater. 6, 278–282 (2007).

    Article  Google Scholar 

  28. 28

    Celik, C. & Warner, S. B. Analysis of the structure and properties of expanded graphite-filled poly(phenylene ether)/atactic polystyrene nanocomposite fibers. J. Appl. Polym. Sci. 103, 645–652 (2007).

    Article  Google Scholar 

  29. 29

    Uhl, F. M., Yao, Q. & Wilkie, C. A. Formation of nanocomposites of styrene and its copolymers using graphite as the nanomaterial. Polym. Adv. Tech. 16, 533–540 (2005).

    Article  Google Scholar 

  30. 30

    Xiao, M., Sun, L. Y., Liu, J. J., Li, Y. & Gong, K. C. Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 43, 2245–2248 (2002).

    Google Scholar 

  31. 31

    Yasmin, A. & Daniel, I. M. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45, 8211–8219 (2004).

    Article  Google Scholar 

  32. 32

    Yuen, S. M. et al. Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites. J. Appl. Polym. Sci. 103, 1272–1278 (2007).

    Article  Google Scholar 

  33. 33

    Putz, K. W., Mitchell, C. A., Krishnamoorti, R. & Green, P. F. Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. J. Polym. Sci. B: Polym. Phys. 42, 2286–2293 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. J. McAllister and D.L. Milius for technical assistance and helpful discussions, and A. Tamashausky of Asbury Carbons for providing the graphite used. Financial support from the NASA University Research, Engineering, and Technology Institute on BioInspired Materials (BIMat) under Award No. NCC-1-02037 is greatly appreciated; additional support from the NSF was provided to I.A.A., R.S.R. and to L.C.B. and S.T.N. through the NSF-MRSEC and NIRT program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. C. Brinson.

Ethics declarations

Competing interests

I.A.A. and R.K.P. are stockholders of Vorbeck Materials Corporation, which is now producing functionalized graphene sheets under the trade name Vor-x. However, all materials used in this study were prepared in our laboratories.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramanathan, T., Abdala, A., Stankovich, S. et al. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotech 3, 327–331 (2008). https://doi.org/10.1038/nnano.2008.96

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research