Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material


The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Thin films of solution-processed GO.
Figure 2: Characterization of reduced GO thin films using Raman spectroscopy.
Figure 3: Electrical and optical properties of reduced GO thin films.
Figure 4: TFT devices based on reduced GO thin films.


  1. 1

    Ahn, J. H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Wu, Z. C. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Snow, E. S., Perkins, F. K., Houser, E. J., Badescu, S. C. & Reinecke, T. L. Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 1942–1945 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Artukovic, E., Kaempgen, M., Hecht, D. S., Roth, S. & Gruner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 5, 757–760 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Fan, Z. et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8, 20–25 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Liang, X., Fu, Z. & Chou, S. Y. Graphene transistors fabricated via transfer-printing in device-active areas on large wafer. Nano Lett. 7, 3840–3844 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Chen, J. H. et al. Printed graphene circuits. Adv. Mater. 19, 3623–3627 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 33–38 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  15. 15

    Barbolina, I.I . et al. Submicron sensors of local electric field with single-electron resolution at room temperature. Appl. Phys. Lett. 88, 013901 (2006).

    Article  Google Scholar 

  16. 16

    Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Coraux, J., N'Diaye, A. T., Busse, C. & Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 8, 565–570 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Gomez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Gijie, S., Han, S., Wang, M., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    Article  Google Scholar 

  22. 22

    Wang, X., Zhi, L. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).

    Article  Google Scholar 

  23. 23

    Jung, I. et al. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Schniepp, H. C. et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).

    CAS  Article  Google Scholar 

  25. 25

    McAllister, M. J. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Stankovich, S. et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M. & Ohba, M. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 42, 2929–2937 (2004).

    CAS  Google Scholar 

  28. 28

    Hu, L., Hecht, D. S. & Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Unalan, H. E., Fanchini, G., Kanwal, A., Du Pasquier, A. & Chhowalla, M. Design criteria for transparent single-wall carbon nanotube thin-film transistors. Nano Lett. 6, 677–682 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Watcharotone, S. et al. Graphene–silica composite thin films as transparent conductors. Nano Lett. 7, 1888–1892 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Uher, C. & Sander, L. M. Unusual temperature dependence of the resistivity of exfoliated graphites. Phys. Rev. B 27, 1326–1332 (1983).

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge Yun-Yue Lin and S. Miller for fabricating organic photovoltaic devices. A detailed study on the photovoltaic devices will be reported elsewhere. We also acknowledge A. Kanwal for help with the low-temperature measurements, and thank O. Celik for help with XPS analysis and A. Mann for allowing us the use of the Raman instrument. This work was funded by the National Science Foundation CAREER Award (ECS 0543867).

Author information



Corresponding author

Correspondence to Manish Chhowalla.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech 3, 270–274 (2008).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research