Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dipole-directed assembly of lines of 1,5-dichloropentane on silicon substrates by displacement of surface charge

Abstract

One-dimensional nanostructures at silicon surfaces have potential applications in nanoscale devices. Here we propose a mechanism of dipole-directed assembly for the growth of lines of physisorbed dipolar molecules. The adsorbate chosen was a halide, in preparation for the patterned imprinting of halogen atoms. Using scanning tunnelling microscopy, physisorbed 1,5-dichloropentane on Si(100)-2×1 was shown to self-assemble at room temperature into molecular lines that grew predominantly perpendicular to the Si-dimer rows. Line formation was triggered by the displacement of surface charge by the dipolar adsorbate. Experimental and simulated scanning tunnelling microscopy images were in agreement for a range of positive and negative bias voltages. The geometry of the physisorbed molecules and nature of their binding were evident from the scanning tunnelling microscopy images, as interpreted by scanning tunnelling microscopy simulation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Self-assembled molecular nanolines at room temperature.
Figure 2: STM images of single nanolines.
Figure 3: Mechanism of formation of the molecular line (theory).
Figure 4: Comparison between theoretical and experimental images.

References

  1. Naitoh, M., Shimaya, H., Nishigaki, S., Oishi, N. & Shoji, F. Scanning tunneling microscopy observation of bismuth growth on Si(100) surfaces. Surf. Sci. 377–379, 899–903 (1997).

    Article  Google Scholar 

  2. Naitoh, M., Shimaya, H., Nishigaki, S., Oishi, N. & Shoji, F. Scanning tunneling microscopy observation of Bi-induced surface structures on the Si(100) surface. Surf. Sci. 482–485, 1440–1444 (2001).

    Article  Google Scholar 

  3. Owen, J. H. G., Miki, K. & Bowler, D. R. Self-assembled nanowires on semiconductor surfaces. J. Mater. Sci. 41, 4568–4603 (2006).

    Article  CAS  Google Scholar 

  4. MacLeod, J. M. & McLean, A. B. Single 2 × 1 domain orientation on Si(100) surfaces using a periodic Bi line arrays. Phys. Rev B 70, 041306 (2004).

    Article  Google Scholar 

  5. MacLeod, J. M., Miwa, R. H., Srivastava, G. P. & McLean, A. B. The electronic origin of contrast reversal in bias-dependent STM images of nanolines. Surf. Sci. 576, 116–122 (2005).

    Article  CAS  Google Scholar 

  6. Preinesberger, C., Vandre, S., Kalka, T. & Dahne-Preitsch, M. Formation of dysprosium silicide wires on Si(001). J. Phys. D 31, L43–L45 (1998).

    Article  CAS  Google Scholar 

  7. Chen, Y., Ohlberg, D. A. A. & Williams, R. S. Nanowires of four epitaxial hexagonal silicides grown on Si(001). J. Appl. Phys. 91, 3213–3218 (2002).

    Article  CAS  Google Scholar 

  8. Nogami, J., Liu, B. Z., Katkov, M. V., Ohbuchi, C. & Birge, N. O. Self-assembled rare earth silicide nanowires on Si(001). Phys. Rev. B 63, 233305 (2001).

    Article  Google Scholar 

  9. Liu, B. Z. & Nogami, J. Growth of parallel rare earth silicide nanowire arrays on vicinal Si(001). Nanotechnology 14, 873–877 (2003).

    Article  CAS  Google Scholar 

  10. Liu, B. Z. & Nogami, J. An STM study of the Si(001)(2×4)-Dy surface. Surf. Sci. 488, 399–405 (2001).

    Article  CAS  Google Scholar 

  11. Ohbuchi, C. & Nogami, J. Holmium growth on Si(001): Surface reconstructions and nanowire formation. Phys. Rev. B 66, 165323 (2002).

    Article  Google Scholar 

  12. Katkov, M. V. & Nogami, J. Yb and Nd growth on Si(001). Surf. Sci. 524, 129–136 (2003).

    Article  CAS  Google Scholar 

  13. Ohbuchi, C. & Nogami, J. Samarium induced surface reconstructions of Si(001). Surf. Sci. 579, 157–165 (2005).

    Article  CAS  Google Scholar 

  14. Harrison, B. C. & Boland, J. J. Real-time STM study of inter-nanowire reactions: GdSi2 nanowires on Si(100). Surf. Sci. 594, 93–98 (2005).

    Article  CAS  Google Scholar 

  15. Evans, M. M. R. & Nogami, J. Indium and gallium on Si(001): A closer look at the parallel dimer structure. Phys. Rev. B 59, 7644–7648 (1999).

    Article  CAS  Google Scholar 

  16. Nogami, J., Baski, A. A. & Quate, C. F. Aluminum on the Si(100) surface: Growth of the first monolayer. Phys. Rev. B 44, 1415–1418 (1991).

    Article  CAS  Google Scholar 

  17. Glueckstein, J. C., Evans, M. M. R. & Nogami, J. Growth of Sn on Si(001) at room temperature. Surf. Sci. 415, 80–94 (1998).

    Article  CAS  Google Scholar 

  18. Itoh, H., Tanabe, H., Winau, D., Schmid, A. K. & Ichinokawa, T. Growth mode and surface structures of the Pb/Si(001) system observed by scanning tunneling microscopy. J. Vac. Sci. Tech. B 12, 2086–2089 (1994).

    Article  CAS  Google Scholar 

  19. Tomatsu, K., Nakatsuji, K., Iimori, T. & Komori, F. STM observation of initial growth of Sn atoms on Ge(001) surface. Surf. Sci. 601, 1736–1746 (2007).

    Article  CAS  Google Scholar 

  20. Hutchison, P., Evans, M. M. R. & Nogami, J. Mg growth on the Si(001) surface: An STM study. Surf. Sci. 411, 99–110 (1998).

    Article  CAS  Google Scholar 

  21. Bakhtizin, R. Z., Kishimoto, J., Hashizume, T. & Sakurai, T. STM study of Sr adsorption on Si(100) surface. Appl. Surf. Sci. 94, 478–484 (1996).

    Article  Google Scholar 

  22. Bird, C. F. & Bowler, D. R. A spin polarized first-principles study of short dangling bond wires on Si(001). Surf. Sci. 531, L351–L355 (2003).

    Article  CAS  Google Scholar 

  23. Chen, T. C. et al. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590–1592 (1995).

    Article  Google Scholar 

  24. Cyr, C. M., Venkataraman, B. & Flynn, G. W. Functional group identification in scanning tunneling microscopy of molecular adsorbates. J. Phys. Chem. 100, 13747–13759 (1996).

    Article  CAS  Google Scholar 

  25. Canas-Ventura, M. E. et al. Coexistence of one- and two-dimensional supramolecular assemblies of terephthalic acid on Pd(111) due to self-limiting deprotonation. J. Chem Phys. 125, 184710 (2006).

    Article  CAS  Google Scholar 

  26. Lopinski, G. P., Wayner, D. D. M. & Wolkow, R. A. Self-directed growth of molecular nanostructures on silicon. Nature 406, 48–51 (2000).

    Article  CAS  Google Scholar 

  27. DiLabio, G. A., Piva, P. G., Kruse, P. & Wolkow, R. A. Dispersion interactions enable the self-directed growth of linear alkane nanostructures covalently bound to silicon. J. Am. Chem. Soc. 126, 16048–16050 (2004).

    Article  CAS  Google Scholar 

  28. Kruse, P., Johnson, E. R., DiLabio, G. A. & Wolkow, R. A. Patterning of vinylferrocene on H–Si(100) via self-directed growth of molecular lines and STM-induced decomposition. Nano Lett. 2, 807–810 (2002).

    Article  CAS  Google Scholar 

  29. Hossain, M. Z., Kato, H. S. & Kawai, M. Controlled fabrication of 1D molecular lines across the dimer rows on the Si(100)-(2 × 1)-H surface through the radical chain reaction. J. Am. Soc. Chem. 127, 15030–15031 (2005).

    Article  CAS  Google Scholar 

  30. Hossain, M. Z., Kato, H. S. & Kawai, M. Fabrication of interconnected 1D molecular lines along and across the dimer rows on the Si(100)-(2 × 1)-H surface through the radical chain reaction. J. Phys. Chem. B 109, 23129–23133 (2005).

    Article  CAS  Google Scholar 

  31. Shimomura, M. et al. Formation of one-dimensional molecular chains on a solid surface: Pyrazine/Si(001). Phys. Rev. B 72, 033303 (2005).

    Article  Google Scholar 

  32. Wang, Y., Chen, X. & Hamers, R. J. Atomic-resolution study of overlayer formation and interfacial mixing in the interaction of phosphorus with Si(001). Phys. Rev. B 50, 4534–4547 (1994).

    Article  CAS  Google Scholar 

  33. Kipp, L. et al. Adsorption and decomposition on Si(100) 2 × 1 studied by STM. Phys. Rev. B 52, 5843–5850 (1995).

    Article  CAS  Google Scholar 

  34. Knall, J. & Pethica, J. B. Growth of Ge on Si(100) and Si(113) studied by STM. Surf. Sci. 265, 156–167 (1992).

    Article  CAS  Google Scholar 

  35. Park, Ch., Bakhizin, R. Z., Hashizume, T. & Sakurai, T. Strain relief and ordering of (2 × n)-Bi structure on Si(100). J. Vac. Sci. Technol. B 12, 2049–2051 (1994).

    Article  Google Scholar 

  36. Wang, Y. & Hwang, G. S. Two-dimension arrangement of CH3NH2 adsorption on Si(001)-2×1. Chem. Phys. Lett. 385, 144–148 (2004).

    Article  CAS  Google Scholar 

  37. Wang, Y. & Hwang, G. S. Origin of nonlocal interactions in adsorption of polar molecules on Si(001)-2×1. J. Chem. Phys. 122, 164706 (2005).

    Article  Google Scholar 

  38. Gao, Q., Cheng, C. C., Chen, P. J., Choyke, W. J. & Yates, J. T. Jr. Chlorine bonding sites and bonding configurations on Si(100)-2 × 1. J. Chem. Phys. 98, 8308–8323 (1993).

    Article  CAS  Google Scholar 

  39. Szabo, A., Farrall, P. D. & Engel, T. Reactions of chlorine with Si(100) and Si(111): Adsorption and desorption kinetics. Surf. Sci. 312, 284–300 (1994).

    Article  CAS  Google Scholar 

  40. Gupta, P., Coon, P. A., Koehler, B. G. & George, S. M. Desorption product yields following Cl2 adsorption on Si(111)-7 × 7: Coverage and temperature dependence. Surf. Sci. 249, 92–104 (1991).

    Article  CAS  Google Scholar 

  41. Dobrin, S. et al. Self-assembled molecular corrals on a semiconductor surface. Surf. Sci. 600, 43–47 (2006).

    Article  Google Scholar 

  42. Dubois, M., Delerue, C. & Rubio, A. Adsorption and electronic excitation of biphenyl on Si(100): a theoretical STM analysis. Phys. Rev. B 75, 041302 (2004).

    Article  Google Scholar 

  43. Grandidier, B. et al. Effect of alkyl substituents on the adsorption of thienylenevinylene oligomers on the Si(100) surface. Surf. Sci. 473, 1–7 (2001).

    Article  CAS  Google Scholar 

  44. Lei, R. Z., Gellman, A. J. & Koel, B. E. Desorption energies of linear and cyclic alkanes on surfaces: Anomalous scaling with length. Surf. Sci. 554, 125–140 (2004).

    Article  CAS  Google Scholar 

  45. Dobrin, S. et al. Molecular dynamics of haloalkane corral-formation and surface halogenation at Si(111)-7 × 7. J. Chem. Phys. 125, 133407 (2006).

    Article  CAS  Google Scholar 

  46. Grandidier, B. et al. Effect of alkyl substituents on the adsorption of thienylenevinylene oligomers on the Si(100) surface. Surf. Sci. 473, 1–7 (2001).

    Article  CAS  Google Scholar 

  47. Dubois, M., Delerue, C. & Allan G. Scanning tunneling microscopy and spectroscopy of conjugated oligomers weakly bonded to Si(100) surfaces: A theoretical study. Phys. Rev. B 71, 165435 (2005).

    Article  Google Scholar 

  48. Kondo, Y., Amakusa, T., Iwatsuki, M. & Tokomoto, H. Phase transition of the Si(001) surface below 100 K. Surf. Sci. 453, L318–L322 (2000).

    Article  CAS  Google Scholar 

  49. Lyubinetsky, I., Dohnalek, Z., Choyke, W. J. & Yates, J. T. Jr. Cl2 dissociation on Si(100)-(2 × 1): A statistical study by scanning tunneling microscopy. Phys. Rev. B 58, 7950–7957 (1998).

    Article  CAS  Google Scholar 

  50. Okada, H., Fujimoto, Y., Endo, K., Hirose, K. & Mori, Y. Detailed analysis of scanning tunneling microscopy images of the Si(001) reconstructed surface with buckled dimers. Phys. Rev. B 63, 195324 (2001).

    Article  Google Scholar 

  51. Oura, K., Lifshits, V. G., Saranin, A. A., Zotov, A. V. & Katayama, M. Surface Science: An Introduction 181–183 (Springer-Verlag, Berlin, 2003).

    Book  Google Scholar 

  52. Bartmess, J. E. & Georgiadis, R. M. Empirical methods for determination of ion gauge sensitivities for different gases. Vacuum 33, 149–153 (1983).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  55. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  56. Hofer, W. A. & Redinger, J. STM of binary alloys: First principles calculation of the current for PtX(100) surfaces. Surf. Sci. 447, 51–61 (2000).

    Article  CAS  Google Scholar 

  57. Palotas, K. & Hofer, W. A. Multiple scattering in a vacuum barrier obtained from real-space wavefunctions. J. Phys. Condens. Matter 17, 2705–2713 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC), the Ontario Centers of Excellence (OCE) Centre for Photonics, the Canadian Institute for Photonic Innovation (CIPI), and the Canadian Institute For Advanced Research (CIFAR) for their support. We thank L. Leung for helpful discussions. W.A.H. thanks the Royal Society for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were performed jointly by K.R.H., T.L., I.R.M. and J.C.P. at the University of Toronto, and the computations by L.Z., S.A. and W.A.H. at the University of Liverpool.

Corresponding author

Correspondence to John C. Polanyi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harikumar, K., Lim, T., McNab, I. et al. Dipole-directed assembly of lines of 1,5-dichloropentane on silicon substrates by displacement of surface charge. Nature Nanotech 3, 222–228 (2008). https://doi.org/10.1038/nnano.2008.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.65

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research