Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube

Abstract

Understanding the physics of low-dimensional systems and the operation of next-generation electronics will depend on our ability to measure the electrical properties of nanomaterials at terahertz frequencies (100 GHz to 10 THz). Single-walled carbon nanotubes are prototypical one-dimensional nanomaterials because of their unique band structure1,2 and long carrier mean free path3,4,5. Although nanotube transistors have been studied at microwave frequencies (100 MHz to 50 GHz)6,7,8,9,10,11, no techniques currently exist to probe their terahertz response12. Here, we describe the first terahertz electrical measurements of single-walled carbon nanotube transistors performed in the time domain. We observe a ballistic electron resonance that corresponds to the round-trip transit of an electron along the nanotube with a picosecond-scale period. The electron velocity is found to be constant and equal to the Fermi velocity, showing that the high-frequency electron response is dominated by single-particle excitations rather than collective plasmon modes. These results demonstrate a powerful new tool for directly probing picosecond electron motion in nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device geometry and measurement setup for THz electrical transport study of a single-walled carbon nanotube.
Figure 2: Single-walled carbon nanotube THz detector.
Figure 3: Time-domain direct detection of ballistic electron resonance.
Figure 4: Gate-voltage dependence of the electron resonance.

Similar content being viewed by others

References

  1. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  2. McEuen, P. L. & Park, J. Y. Electron transport in single-walled carbon nanotubes. Mater. Res. Soc. Bull. 29, 272–275 (2004).

    Article  CAS  Google Scholar 

  3. Park, J. Y. et al. Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).

    Article  CAS  Google Scholar 

  4. Zhou, X. J., Park, J. Y., Huang, S. M., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Article  Google Scholar 

  5. Purewal, M. S. et al. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 186808 (2007).

    Article  Google Scholar 

  6. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  7. Appenzeller, J. & Frank, D. J. Frequency dependent characterization of transport properties in carbon nanotube transistors. Appl. Phys. Lett. 84, 1771–1773 (2004).

    Article  CAS  Google Scholar 

  8. Yu, Z. & Burke, P. J. Microwave transport in metallic single-walled carbon nanotubes. Nano Lett. 5, 1403–1406 (2005).

    Article  CAS  Google Scholar 

  9. Rosenblatt, S., Lin, H., Sazonova, V., Tiwari, S. & McEuen, P. L. Mixing at 50 GHz using a single-walled carbon nanotube transistor. Appl. Phys. Lett. 87, 153111 (2005).

    Article  Google Scholar 

  10. Plombon, J. J., O'Brien, K. P., Gstrein, F., Dubin, V. M. & Jiao, Y. High-frequency electrical properties of individual and bundled carbon nanotubes. Appl. Phys. Lett. 90, 063106 (2007).

    Article  Google Scholar 

  11. Zhang, M., Huo, X., Chan, P. C. H., Liang, Q. & Tang, Z. K. Radio-frequency characterization for the single-walled carbon nanotubes. Appl. Phys. Lett. 88, 163109 (2006).

    Article  Google Scholar 

  12. Karadi, C. et al. Dynamic-response of a quantum point-contact. J. Opt. Soc. Am. B 11, 2566–2571 (1994).

    Article  CAS  Google Scholar 

  13. Ferguson, B. & Zhang, X. C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

    Article  CAS  Google Scholar 

  14. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  CAS  Google Scholar 

  15. Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  Google Scholar 

  16. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  CAS  Google Scholar 

  17. Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

    Article  CAS  Google Scholar 

  18. Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  CAS  Google Scholar 

  19. Kong, J. et al. Quantum interference and ballistic transmission in nanotube electron waveguides. Phys. Rev. Lett. 87, 106801 (2001).

    Article  CAS  Google Scholar 

  20. Peca, C. S., Balents, L. & Wiese, K. J. Fabry–Perot interference and spin filtering in carbon nanotubes. Phys. Rev. B 68, 205423 (2003).

    Article  Google Scholar 

  21. Burke, P. J. Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotech. 1, 129–144 (2002).

    Article  Google Scholar 

  22. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

    Article  CAS  Google Scholar 

  23. Tombler, T. W. et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000).

    Article  CAS  Google Scholar 

  24. Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).

    Article  CAS  Google Scholar 

  25. Auston, D. H., Cheung, K. P. & Smith, P. R. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 45, 284–286 (1984).

    Article  Google Scholar 

  26. Ketchen, M. B. et al. Generation of subpicosecond electrical pulses on coplanar transmission-lines. Appl. Phys. Lett. 48, 751–753 (1986).

    Article  Google Scholar 

  27. Ilani, S., Donev, L. A. K., Kindermann, M. & McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys. 2, 687–691 (2006).

    Article  CAS  Google Scholar 

  28. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  29. Lieber, C. M. & Wang, Z. L. Functional nanowires. Mater. Res. Soc. Bull. 32, 99–108 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Orenstein and L. Kouwenhoven for early assistance and discussions. This work was supported by the National Science Foundation (NSF) through the Cornell Center for Nanoscale Systems, and by the MARCO Focused Research Center on Materials, Structures, and Devices. Sample fabrication was performed at the Cornell Nano-Scale Science and Technology Facility (a member of the National Nanofabrication Infrastructure Network), funded by the NSF.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and P.L.M. conceived the experiments. Z.Z. performed the experiments, and analysed the data together with N.M.G. and P.L.M. J.E.S. and A.L.G. provide valuable help on the optics. Z.Z. and P.L.M. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Paul L. McEuen.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z., Gabor, N., Sharping, J. et al. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nature Nanotech 3, 201–205 (2008). https://doi.org/10.1038/nnano.2008.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing