Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-resolution detection of Au catalyst atoms in Si nanowires

Abstract

The potential for the metal nanocatalyst to contaminate vapour–liquid–solid grown semiconductor nanowires has been a long-standing concern, because the most common catalyst material, Au, is highly detrimental to the performance of minority carrier electronic devices. We have detected single Au atoms in Si nanowires grown using Au nanocatalyst particles in a vapour–liquid–solid process. Using high-angle annular dark-field scanning transmission electron microscopy, Au atoms were observed in higher numbers than expected from a simple extrapolation of the bulk solubility to the low growth temperature. Direct measurements of the minority carrier diffusion length versus nanowire diameter, however, demonstrate that surface recombination controls minority carrier transport in as-grown n-type nanowires; the influence of Au is negligible. These results advance the quantitative correlation of atomic-scale structure with the properties of nanomaterials and can provide essential guidance to the development of nanowire-based device technologies.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Aberration-corrected STEM imaging of Au atoms in a phosphorus-doped Si nanowire.
Figure 2: Three-dimensional localization of Au atoms.
Figure 3: Atom probe analysis of the catalyst–nanowire interface.
Figure 4: Electron beam induced current measurement on Si nanowire devices.
Figure 5: Dependence on diameter of minority carrier diffusion length.

References

  1. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    CAS  Article  Google Scholar 

  2. Beckman, R., Johnston-Halperin, E., Luo, Y., Green, J. E. & Heath, J. R. Bridging dimensions: Demultiplexing ultrahigh-density nanowire circuits. Science 310, 465–468 (2005).

    CAS  Article  Google Scholar 

  3. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001).

    CAS  Article  Google Scholar 

  4. Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006).

    CAS  Article  Google Scholar 

  5. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    CAS  Article  Google Scholar 

  6. Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    CAS  Article  Google Scholar 

  7. Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

    CAS  Article  Google Scholar 

  8. Javey, A., Nam, S., Friedman, R. S., Yan, H. & Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007).

    CAS  Article  Google Scholar 

  9. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    CAS  Article  Google Scholar 

  10. Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. F. & Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

    CAS  Article  Google Scholar 

  11. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    CAS  Article  Google Scholar 

  12. Lauhon, L. J., Gudiksen, M. S., Wang, C. L. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    CAS  Article  Google Scholar 

  13. Sprokel, G. J. & Fairfield, J. M. Diffusion of gold into silicon crystals. J. Electrochem. Soc. 112, 200–203 (1965).

    CAS  Article  Google Scholar 

  14. Bullis, W. M. Properties of gold in silicon. Solid State Electron. 9, 143–168 (1966).

    CAS  Article  Google Scholar 

  15. Wang, Y., Schmidt, V., Senz, S. & Gosele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotech. 1, 186–189 (2006).

    CAS  Article  Google Scholar 

  16. Shchetinin, A. A. et al. Distribution coefficient of the initiating impurity and its influence on the electrical-resistivity of filamentary silicon-crystals. Inorgan. Mater. 27, 1137–1139 (1991).

    Google Scholar 

  17. Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. & Gossmann, H. J. L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002).

    CAS  Article  Google Scholar 

  18. Stolwijk, N. A., Schuster, B. & Holzl, J. Diffusion of gold in silicon studied by means of neutron-activation analysis and spreading-resistance measurements. Appl. Phys. A Mater. Sci. Process. 33, 133–140 (1984).

    Article  Google Scholar 

  19. Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).

    CAS  Article  Google Scholar 

  20. Kodambaka, S., Tersoff, J., Reuter, M. C. & Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 316, 729–732 (2007).

    CAS  Article  Google Scholar 

  21. Reitano, R., Smith, P. M. & Aziz, M. J. Solute trapping of group-III, IV, and V elements in silicon by an aperiodic stepwise growth-mechanism. J. Appl. Phys. 76, 1518–1529 (1994).

    CAS  Article  Google Scholar 

  22. Perea, D. E. et al. Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett. 6, 181–185 (2006).

    CAS  Article  Google Scholar 

  23. Ioannou, D. E. & Dimitriadis, C. A. A SEM-EBIC minority-carrier diffusion-length measurement technique. IEEE Trans Electron. Dev. 29, 445–450 (1982).

    Article  Google Scholar 

  24. Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006).

    CAS  Article  Google Scholar 

  25. Kodambaka, S., Hannon, J. B., Tromp, R. M. & Ross, F. M. Control of Si nanowire growth by oxygen. Nano Lett. 6, 1292–1296 (2006).

    CAS  Article  Google Scholar 

  26. Daiminger, F., Schmidt, A., Faller, F. & Forchel, A. Picosecond time resolved investigations of carrier lifetime and carrier capture in InGaAs/GaAs quantum dots. Proc. SPIE 2139, 213–221 (1994).

    CAS  Article  Google Scholar 

  27. Klaassen, D. B. M. A unified mobility model for device simulation .2. Temperature-dependence of carrier mobility and lifetime. Solid State Electron. 35, 961–967 (1992).

    CAS  Article  Google Scholar 

  28. Gray, P. V. & Brown, D. M. Density of SiO2–Si interface states. Appl. Phys. Lett. 8, 31–33 (1966).

    CAS  Article  Google Scholar 

  29. Seo, K. I., Sharma, S., Yasseri, A. A., Stewart, D. R. & Kamins, T. I. Surface charge density of unpassivated and passivated metal-catalyzed silicon nanowires. Electrochem. Solid State Lett. 9, G69–G72 (2006).

    CAS  Article  Google Scholar 

  30. Haick, H., Hurley, P. T., Hochbaum, A. I., Yang, P. D. & Lewis, N. S. Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J. Am. Chem. Soc. 128, 8990–8991 (2006).

    CAS  Article  Google Scholar 

  31. Perea, D. E., Lensch, J. L., May, S. J., Wessels, B. W. & Lauhon, L. J. Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography. Appl. Phys. A Mater. Sci. Process. 85, 271–275 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work at Northwestern was supported by the National Science Foundation (NSF) through the Materials Research Science and Engineering Center (MRSEC) (J.A.), CAREER (L.L.), NIRT (E.H.) and Graduate Research Fellowship (J.L.) programmes; the Office of Naval Research and a Ford Foundation Fellowship (D.P.); and an Alfred P. Sloan Research Fellowship (L.L.). E.H. acknowledges a travel grant from the Northwestern University Nanoscale Science and Engineering Center (NSEC). We acknowledge the Northwestern University Center for Atom -- Probe Tomography facility and the Northwestern University Atomic- and Nanoscale Characterization Experimental Center (NUANCE). The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois and Northwestern University. The work at Birmingham and Daresbury was supported by the Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations

Authors

Contributions

J.A. and E.H. contributed equally to this work. J.A. performed the device experiments and analysed the data with L.L. D.P. performed the atom probe experiments and analysed the data with L.L. E.H. and J.L. synthesized the materials. The STEM work and analysis were conducted by the Birmingham-SuperSTEM collaboration (Z.Y.L, F.Y, R.E.P., M.H.G., P.W. and A.L.B.) in association with the Northwestern group (E.H. and L.L.). L.L. coordinated the design and execution of the experiments. J.A. and L.L. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Lincoln J. Lauhon.

Supplementary information

Supplementary Information

Supplementary figure S1–S4 and supplementary text S1–S5 (PDF 1422 kb)

Supplementary Movie (AVI 3823 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Allen, J., Hemesath, E., Perea, D. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nature Nanotech 3, 168–173 (2008). https://doi.org/10.1038/nnano.2008.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.5

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research