Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intrinsic and extrinsic performance limits of graphene devices on SiO2

Abstract

The linear dispersion relation in graphene1,2 gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder3 or phonons4,5,6,7,8, is independent of carrier density, n. Here we show that electron–acoustic phonon scattering4,5,6 is indeed independent of n, and contributes only 30 Ω to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 ×1012 cm−2, we infer a mean free path for electron–acoustic phonon scattering of >2 µm and an intrinsic mobility limit of 2 × 105 cm2 V−1 s−1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility (7.7 × 104 cm2 V−1 s−1; ref. 9) and that of semiconducting carbon nanotubes (1 × 105 cm2 V−1 s−1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above 200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate11,12 and limit the room-temperature mobility to 4 × 104 cm2 V−1 s−1, indicating the importance of substrate choice for graphene devices13.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Temperature-dependent resistivity of graphene on SiO2.
Figure 2: Room-temperature performance limits of graphene on SiO2.
Figure 3: Temperature dependence of mobility in graphene and graphite.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  3. Shon, N. H. & Ando, T. Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn 67, 2421–2429 (1998).

    CAS  Article  Google Scholar 

  4. Pietronero, L., Strässler, S., Zeller, H. R. & Rice, M. J. Electrical conductivity of a graphite layer. Phys. Rev. B 22, 904–910 (1980).

    CAS  Article  Google Scholar 

  5. Stauber, T., Peres, N. M. R. & Guinea, F. Electronic transport in graphene: A semi-classical approach including midgap states. Phys. Rev. B 76, 205423 (2007).

    Article  Google Scholar 

  6. Hwang, E. H. & Sarma, S. D. Acoustic phonon scattering limited carrier mobility in 2D extrinsic graphene. http://arxiv.org/abs/0711.0754 (2007).

  7. Tan, Y.-W., Zhang, Y., Stormer, H. L. & Kim, P. Temperature dependent electron transport in graphene. Eur. Phys. J. Special Topics 148, 15–18 (2007).

    Article  Google Scholar 

  8. Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    CAS  Article  Google Scholar 

  9. Hrostowski, H. J., Morin, F. J., Geballe, T. H. & Wheatley, G. H. Hall effect and conductivity of InSb. Phys. Rev. 100, 1672–1676 (1955).

    CAS  Article  Google Scholar 

  10. Dürkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

    Article  Google Scholar 

  11. Hess, K. & Vogl, P. Remote polar scattering in silicon inversion layers. Solid State Commun. 30, 807–809 (1979).

    CAS  Article  Google Scholar 

  12. Fratini, S. & Guinea, F. Substrate limited electron dynamics in graphene. http://arxiv.org/abs/0711.1303 (2007).

  13. Chen, J. H. et al. Printed graphene circuits. Adv. Mater. 19, 3623–3627 (2007).

    CAS  Article  Google Scholar 

  14. Chen, J. H. et al. Charged impurity scattering in graphene. Nature Phys. (in press). http://arxiv.org/abs/0708.2408.

  15. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).

    CAS  Article  Google Scholar 

  16. Woods, L. M. & Mahan, G. D. Electron–phonon effects in graphene and armchair (10,10) single-wall carbon nanotubes. Phys. Rev. B 61, 10651–10663 (2000).

    CAS  Article  Google Scholar 

  17. Suzuura, H. & Ando, T. Phonons and electron–phonon scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002).

    Article  Google Scholar 

  18. Pennington, G. & Goldsman, N. Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys. Rev. B 68, 045426 (2003).

    Article  Google Scholar 

  19. Perebeinos, V., Tersoff, J. & Avouris, P. Electron–phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 086802 (2005).

    Article  Google Scholar 

  20. Ono, S. & Sugihara, K. Theory of the transport properties in graphite. J. Phys. Soc. Jpn 21, 861–868 (1966).

    CAS  Article  Google Scholar 

  21. Zhou, X., Park, J.-Y., Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Article  Google Scholar 

  22. Fischetti, M. V., Neumayer, D. A. & Cartier, E. A. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with high-k insulator: The role of remote phonon scattering. J. Appl. Phys. 90, 4587–4608 (2001).

    CAS  Article  Google Scholar 

  23. Mohr, M. et al. Phonon dispersion of graphite by inelastic x-ray scattering. Phys. Rev. B 76, 035439 (2007).

    Article  Google Scholar 

  24. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

    CAS  Article  Google Scholar 

  25. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    CAS  Article  Google Scholar 

  26. Bennett, B. R., Magno, R., Boos, J. B., Kruppa, W. & Ancona, M. G. Antimonide-based compound semiconductors for electronic devices: A review. Solid State Electron. 49, 1875–1895 (2005).

    CAS  Article  Google Scholar 

  27. Sugihara, K., Kawamura, K. & Tsuzuku, T. Temperature dependence of the average mobility in graphite. J. Phys. Soc. Jpn 47, 1210–1215 (1979).

    CAS  Article  Google Scholar 

  28. Adam, S., Hwang, E. H., Galitski, V. M. & Sarma, S. D. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

    CAS  Article  Google Scholar 

  29. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    CAS  Article  Google Scholar 

  30. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge stimulating discussions with S. Das Sarma, E. Hwang, S. Adam, S. Fratini and E. D. Williams. We also thank E. D. Williams for use of UHV facilities. This work has been supported by the U.S. Office of Naval Research grant no. N000140610882 (CJ, SX, MSF), National Science Foundation grant no. CCF-06-34321 (MSF), and the NSF-UMD-MRSEC grant no. DMR 05-20471 (JHC). M.I. is supported by the Intelligence Community Postdoctoral Fellowship programme.

Author information

Authors and Affiliations

Authors

Contributions

M.S.F. and M.I. conceived the experiments, M.I. designed the experimental apparatus, J.H.C. performed the bulk of the experiments and data analysis, C.J. and S.X. fabricated devices and aided in the experiments, and M.S.F. and J.H.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael S. Fuhrer.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, JH., Jang, C., Xiao, S. et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech 3, 206–209 (2008). https://doi.org/10.1038/nnano.2008.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.58

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research