Abstract
The linear dispersion relation in graphene1,2 gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder3 or phonons4,5,6,7,8, is independent of carrier density, n. Here we show that electron–acoustic phonon scattering4,5,6 is indeed independent of n, and contributes only 30 Ω to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 ×1012 cm−2, we infer a mean free path for electron–acoustic phonon scattering of >2 µm and an intrinsic mobility limit of 2 × 105 cm2 V−1 s−1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility (∼7.7 × 104 cm2 V−1 s−1; ref. 9) and that of semiconducting carbon nanotubes (∼1 × 105 cm2 V−1 s−1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above ∼200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate11,12 and limit the room-temperature mobility to ∼4 × 104 cm2 V−1 s−1, indicating the importance of substrate choice for graphene devices13.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Shon, N. H. & Ando, T. Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn 67, 2421–2429 (1998).
Pietronero, L., Strässler, S., Zeller, H. R. & Rice, M. J. Electrical conductivity of a graphite layer. Phys. Rev. B 22, 904–910 (1980).
Stauber, T., Peres, N. M. R. & Guinea, F. Electronic transport in graphene: A semi-classical approach including midgap states. Phys. Rev. B 76, 205423 (2007).
Hwang, E. H. & Sarma, S. D. Acoustic phonon scattering limited carrier mobility in 2D extrinsic graphene. http://arxiv.org/abs/0711.0754 (2007).
Tan, Y.-W., Zhang, Y., Stormer, H. L. & Kim, P. Temperature dependent electron transport in graphene. Eur. Phys. J. Special Topics 148, 15–18 (2007).
Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).
Hrostowski, H. J., Morin, F. J., Geballe, T. H. & Wheatley, G. H. Hall effect and conductivity of InSb. Phys. Rev. 100, 1672–1676 (1955).
Dürkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).
Hess, K. & Vogl, P. Remote polar scattering in silicon inversion layers. Solid State Commun. 30, 807–809 (1979).
Fratini, S. & Guinea, F. Substrate limited electron dynamics in graphene. http://arxiv.org/abs/0711.1303 (2007).
Chen, J. H. et al. Printed graphene circuits. Adv. Mater. 19, 3623–3627 (2007).
Chen, J. H. et al. Charged impurity scattering in graphene. Nature Phys. (in press). http://arxiv.org/abs/0708.2408.
Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).
Woods, L. M. & Mahan, G. D. Electron–phonon effects in graphene and armchair (10,10) single-wall carbon nanotubes. Phys. Rev. B 61, 10651–10663 (2000).
Suzuura, H. & Ando, T. Phonons and electron–phonon scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002).
Pennington, G. & Goldsman, N. Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys. Rev. B 68, 045426 (2003).
Perebeinos, V., Tersoff, J. & Avouris, P. Electron–phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 086802 (2005).
Ono, S. & Sugihara, K. Theory of the transport properties in graphite. J. Phys. Soc. Jpn 21, 861–868 (1966).
Zhou, X., Park, J.-Y., Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).
Fischetti, M. V., Neumayer, D. A. & Cartier, E. A. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with high-k insulator: The role of remote phonon scattering. J. Appl. Phys. 90, 4587–4608 (2001).
Mohr, M. et al. Phonon dispersion of graphite by inelastic x-ray scattering. Phys. Rev. B 76, 035439 (2007).
Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).
Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).
Bennett, B. R., Magno, R., Boos, J. B., Kruppa, W. & Ancona, M. G. Antimonide-based compound semiconductors for electronic devices: A review. Solid State Electron. 49, 1875–1895 (2005).
Sugihara, K., Kawamura, K. & Tsuzuku, T. Temperature dependence of the average mobility in graphite. J. Phys. Soc. Jpn 47, 1210–1215 (1979).
Adam, S., Hwang, E. H., Galitski, V. M. & Sarma, S. D. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).
Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).
Acknowledgements
We acknowledge stimulating discussions with S. Das Sarma, E. Hwang, S. Adam, S. Fratini and E. D. Williams. We also thank E. D. Williams for use of UHV facilities. This work has been supported by the U.S. Office of Naval Research grant no. N000140610882 (CJ, SX, MSF), National Science Foundation grant no. CCF-06-34321 (MSF), and the NSF-UMD-MRSEC grant no. DMR 05-20471 (JHC). M.I. is supported by the Intelligence Community Postdoctoral Fellowship programme.
Author information
Authors and Affiliations
Contributions
M.S.F. and M.I. conceived the experiments, M.I. designed the experimental apparatus, J.H.C. performed the bulk of the experiments and data analysis, C.J. and S.X. fabricated devices and aided in the experiments, and M.S.F. and J.H.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.
Corresponding author
Supplementary information
Rights and permissions
About this article
Cite this article
Chen, JH., Jang, C., Xiao, S. et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech 3, 206–209 (2008). https://doi.org/10.1038/nnano.2008.58
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2008.58