Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conductivity of a single DNA duplex bridging a carbon nanotube gap

Abstract

We describe a general method to integrate DNA strands between single-walled carbon nanotube electrodes and to measure their electrical properties. We modified DNA sequences with amines on either the 5′ terminus or both the 3′ and 5′ termini and coupled these to the single-walled carbon nanotube electrodes through amide linkages, enabling the electrical properties of complementary and mismatched strands to be measured. Well-matched duplex DNA in the gap between the electrodes exhibits a resistance on the order of 1 MΩ. A single GT or CA mismatch in a DNA 15-mer increases the resistance of the duplex 300-fold relative to a well-matched one. Certain DNA sequences oriented within this gap are substrates for Alu I, a blunt end restriction enzyme. This enzyme cuts the DNA and eliminates the conductive path, supporting the supposition that the DNA is in its native conformation when bridging the ends of the single-walled carbon nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A method to cut and functionalize individual SWNTs with DNA strands.
Figure 2: Device characteristics for individual SWNTs connected with DNA.
Figure 3: Mismatches have a large effect on DNA conductance.
Figure 4: Enzymes can be used to cleave the DNA between the ends of the SWNTs.

Similar content being viewed by others

References

  1. Eley, D. D. & Spivey, D. I. Semiconductivity of organic substances: Nucleic acid in dry state. Trans. Faraday Soc. 58, 411–415 (1962).

    Article  CAS  Google Scholar 

  2. O'Neill, M. A. & Barton, J. K. in Sequence-Dependent DNA Dynamics: The Regulator of DNA-Mediated Charge Transport in Charge Transfer in DNA (ed. Wagenknecht, H. A.) 27–75 (Springer-Verlag, Weinheim, Germany, 2005).

    Google Scholar 

  3. Schuster, G. B. (ed.) Long-range charge transfer in DNA I & II. Top. Curr. Chem. 236 (2004).

  4. Giese, B. Long-distance electron transfer through DNA. Ann. Rev. Biochem. 71, 51–70 (2002).

    Article  CAS  Google Scholar 

  5. Delaney, S. & Barton, J. K. Long-range DNA charge transport. J. Org. Chem. 68, 6475–6483 (2003).

    Article  CAS  Google Scholar 

  6. Murphy, C. J. et al. Long-range photoinduced electron transfer through a DNA helix. Science 262, 1025–1029 (1993).

    Article  CAS  Google Scholar 

  7. Lewis, F. D. et al. Distance-dependent electron transfer in DNA hairpins. Science 277, 673–676 (1997).

    Article  CAS  Google Scholar 

  8. Hall, D. B., Holmlin, R. E. & Barton, J. K. Oxidative DNA damage through long-range electron transfer. Nature 382, 731–735 (1996).

    Article  CAS  Google Scholar 

  9. Dandliker, P. J., Holmlin, R. E. & Barton, J. K. Oxidative thymine dimer repair in the DNA helix. Science 275, 1465–1468 (1997).

    Article  CAS  Google Scholar 

  10. Kelley, S. O. & Barton, J. K. Electron transfer between bases in double helical DNA. Science 283, 375–381 (1999).

    Article  CAS  Google Scholar 

  11. Gasper, S. M. & Schuster, G. B. Photoinduced electron transfer to anthraquinones linked to duplex DNA: the effect of gaps and traps on long-range radical cation migration. J. Am. Chem. Soc. 119, 12762–12771 (1997).

    Article  CAS  Google Scholar 

  12. Giese, B., Amaudrut, J., Kohler, A. K., Spormann, M. & Wesselly, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001).

    Article  CAS  Google Scholar 

  13. Wan, C., Fiebig, T., Kelley, S. O., Treadway, C. R. & Barton, J. K. Femtosecond dynamics of DNA-mediated electron transfer. Proc. Natl Acad. Sci. USA 96, 6014–6019 (1999).

    Article  CAS  Google Scholar 

  14. Nunez, M. E., Hall, D. B. & Barton, J. K. Long-range oxidative damage to DNA: Effects of distance and sequence. Chem. Biol. 6, 85–97 (1999).

    Article  CAS  Google Scholar 

  15. Henderson, P. T., Jones, D., Hampikian, G., Kan, Y. & Schuster, G. B. Long-distance charge transport in duplex DNA: The phonon-assisted polaron-like hopping mechanism. Proc. Natl Acad. Sci. USA 96, 8353–8358 (1999).

    Article  CAS  Google Scholar 

  16. Kelley, S. O., Homlin, R. E., Stemp, E. D. A. & Barton, J. K. Photoinduced electron transfer in ethidium-modified DNA duplexes: Dependence on distance and base stacking. J. Am. Chem. Soc. 119, 9861–9870 (1997).

    Article  CAS  Google Scholar 

  17. Boal, A. K. et al. DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. Biochemistry 44, 8397–8407 (2005).

    Article  CAS  Google Scholar 

  18. Nunez, M. E., Holmquist, G. P. & Barton, J. K. Evidence for DNA charge transport in the nucleus. Biochemistry 40, 12465–12471 (2001).

    Article  CAS  Google Scholar 

  19. Boon, E. M., Salas, J. E., & Barton, J. K. An electrical probe of DNA–protein interactions on DNA-modified surfaces. Nature Biotechnol. 20, 282–286 (2002).

    Article  CAS  Google Scholar 

  20. Boon, E. M. et al. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotechnol. 18, 1096–1100 (2000).

    Article  CAS  Google Scholar 

  21. Guo, X. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    Article  CAS  Google Scholar 

  22. Guo, X. et al. Single-molecule devices as scaffolding for multicomponent nanostructure assembly. Nano Lett. 7, 1119–1122 (2007).

    Article  CAS  Google Scholar 

  23. Guo, X. et al. Chemoresponsive monolayer transistors. Proc. Natl Acad. Sci USA 103, 11452–11456 (2006).

    Article  CAS  Google Scholar 

  24. Whalley, A. C., Steigerwald, M. L., Guo, X. & Nuckolls, C. Reversible switching in molecular electronic devices. J. Am. Chem. Soc. 129, 12590–12591 (2007).

    Article  CAS  Google Scholar 

  25. Fink, H. W. & Schonenberger, C. Electrical conduction through DNA molecules. Nature 398, 407–410 (1999).

    Article  CAS  Google Scholar 

  26. Porath, D., Bezryadin, A., de Vries, S. & Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 (2000).

    Article  CAS  Google Scholar 

  27. Storm, A. J., van Noort, J., de Vries, S. & Dekker, C. S. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl. Phys. Lett. 79, 3881–3883 (2001).

    Article  CAS  Google Scholar 

  28. Kasumov, A. Y. et al. Proximity-induced superconductivity in DNA. Science 291, 280–282 (2000).

    Article  Google Scholar 

  29. Gohen, H., Nogues, C., Naaman, R. & Porath, D. Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc. Natl Acad. Sci. USA 102, 11589–11593 (2005).

    Article  Google Scholar 

  30. van Zalinge, H. et al. Variable-temperature measurements of the single-molecule conductance of double-stranded DNA. Angew. Chem. Int. Edn 45, 5499–5502 (2006).

    Article  CAS  Google Scholar 

  31. Hihath, J., Xu, B., Zhang, P. & Tao, N. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. Proc. Natl Acad. Sci. USA 102, 16979–16983 (2005).

    Article  CAS  Google Scholar 

  32. Wierzbinski, E., Arndt, J., Hammond, W. & Slowinski, K. In situ electrochemical distance tunneling spectroscopy of ds-DNA molecules. Langmuir 22, 2426–2429 (2006).

    Article  CAS  Google Scholar 

  33. Ceres, D. M. & Barton, J. K. In situ scanning tunneling microscopy of DNA-modified gold surfaces: bias and mismatch dependence. J. Am. Chem. Soc. 125, 14964–14965 (2003).

    Article  CAS  Google Scholar 

  34. Bhattacharya, P. K. & Barton, J. K. The influence of intervening mismatches on long-range guanine oxidation in DNA duplexes. J. Am. Chem. Soc. 123, 8649–8656 (2001).

    Article  CAS  Google Scholar 

  35. O'Neill, M. A., Becker, H.-C., Wan, C., Barton, J. K. & Zewail, A. H. Ultrafast dynamics in DNA-mediated electron transfer: base gating and the role of temperature. Angew. Chem. Int. Edn 42, 5896–5900 (2003).

    Article  CAS  Google Scholar 

  36. Tsang, D. Z. & Dresselhaus, M. S. The c-axis electrical conductivity of kish graphite. Carbon 14, 43–46 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge primary financial support from the Nanoscale Science and Engineering Initiative of the National Science Foundation (NSF) under NSF award number (CHE-0117752 and CHE-0641523) and by the New York State Office of Science, Technology, and Academic Research (NYSTAR) and the NSF NIRT Award (ECCS-0707748). C.N. acknowledges a NSF CAREER award (no. DMR-02-37860). J.K.B. thanks the National Institutes of Health (NIH) (JKB-GM61077) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

X.G. and A.G. performed the experiments and wrote the manuscript. J.H., J.K.B. and C.N. designed the research and wrote the manuscript.

Corresponding authors

Correspondence to Jacqueline K. Barton or Colin Nuckolls.

Supplementary information

Supplementary Information

Supplementary figures S1–S7 (PDF 636 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Gorodetsky, A., Hone, J. et al. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nature Nanotech 3, 163–167 (2008). https://doi.org/10.1038/nnano.2008.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing