Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices


Thin layers of indium tin oxide are widely used as transparent coatings and electrodes in solar energy cells1, flat-panel displays2,3, antireflection coatings4, radiation protection5 and lithium-ion battery materials6, because they have the characteristics of low resistivity, strong absorption at ultraviolet wavelengths, high transmission in the visible7, high reflectivity in the far-infrared and strong attenuation in the microwave region. However, there is often a trade-off between electrical conductivity and transparency at visible wavelengths for indium tin oxide and other transparent conducting oxides. Here, we report the growth of layers of indium tin oxide nanowires that show optimum electronic and photonic properties and demonstrate their use as fully transparent top contacts in the visible to near-infrared region for light-emitting devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ITO nanowire nucleation and growth.
Figure 2: Electrical characterization of ITO nanowire/SiGe MQW contacts.
Figure 3: Optical transmission characteristics of ITO nanowire layers.
Figure 4: Photo- and electroluminescence emission from ITO nanowire-contacted SiGe MQW LED.

Similar content being viewed by others


  1. Ginely, D. S. & Bright, C. Transparent conducting oxides. MRS Bull. 25, 15–65 (2000).

    Article  Google Scholar 

  2. Wan, Q. et al. High-performance transparent conducting oxide nanowires. Nano Lett. 6, 2909–2915 (2006).

    Article  CAS  Google Scholar 

  3. Sawada, M., Higuchi, M., Kondo, S. & Saka, H. Characteristics of indium-tin-oxide/silver/indium-tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays. Jpn J. Appl. Phys. 40, 3332–3336 (2001).

    Article  CAS  Google Scholar 

  4. Kim, H., Horwitz, J. S., Kim, W. H., Kafafi, Z. H. & Chrisey, D. B. Highly oriented indium tin oxide films for high efficiency organic light-emitting diodes. J. Appl. Phys. 91, 5371–5376 (2002).

    Article  CAS  Google Scholar 

  5. Synowicki, R. A., Hale, J. S., Ianno, N. J. & Woollam, J. A. Low earth orbit effects on indium tin oxide and polyester and comparison with laboratory simulations. Surf. Coat. Technol. 62, 499–503 (1993).

    Article  CAS  Google Scholar 

  6. Kim, D.-W. et al. Highly conductive coaxial SnO2–In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 7, 3041–3045 (2007).

    Article  CAS  Google Scholar 

  7. Granqvist, C. G. & Hultåker, A. Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411, 1–5 (2002).

    Article  CAS  Google Scholar 

  8. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2006).

    Article  Google Scholar 

  9. Hsu, Y.-J. & Lu, S.-Y. Vapor–solid growth of Sn nanowires: Growth mechanism and superconductivity. J. Phys. Chem. B 109, 4398–4403 (2005).

    Article  CAS  Google Scholar 

  10. Zhou, J. et al. Vertically aligned Zn2SiO4 nanotube/ZnO nanowire heterojunction arrays. Small 3, 622–626 (2007).

    Article  CAS  Google Scholar 

  11. Lu, J. G., Chang, P. & Fan, Z. Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications. Mater. Sci. Eng. R 52, 49–91 (2006).

    Article  Google Scholar 

  12. Johnson, M. C., Aloni, S., McCready, D. E. & Bourret-Courchesne, E. Controlled vapour–liquid–solid growth of indium, gallium and tin oxide nanowires via chemical vapor transport. Cryst. Growth Des. 6, 1936–1941 (2006).

    Article  CAS  Google Scholar 

  13. Nguyen, P. et al. Epitaxial directional growth of indium-doped tin oxide nanowire arrays. Nano Lett. 3, 925–928 (2003).

    Article  CAS  Google Scholar 

  14. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  15. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. D. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  16. Dattoli, E. N. et al. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 7, 2463–2469 (2002).

    Article  Google Scholar 

  17. Wang, D. L. & Lieber, C. M. Inorganic materials: Nanocrystals branch out. Nature Mater. 2, 355–356 (2003).

    Article  CAS  Google Scholar 

  18. van der Pauw, L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Repts. 13, 1–9 (1958).

    Google Scholar 

  19. Wan, Q., Feng P. & Wang T. H. Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties. Appl. Phys. Lett. 89, 123102 (2006).

    Article  Google Scholar 

  20. Zhang, L., Tu, R. & Dai, H. J. Parallel core–shell metal–dielectric–semiconductor germanium nanowires for high-current surround-gate field-effect transistors. Nano Lett. 6, 2785–2789 (2006).

    Article  CAS  Google Scholar 

  21. Nguyen, P. et al. Direct integration of metal oxide nanowire in vertical field-effect transistor. Nano Lett. 4, 651–657 (2004).

    Article  CAS  Google Scholar 

  22. Ju, S. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotech. 2, 378–384 (2007).

    Article  CAS  Google Scholar 

  23. Kim, J. K. et al. Light extraction enhancement of GaInN light emitting diodes by graded refractive index indium tin oxide anti-reflection contact. Adv. Mater. 20, 801–804 (2008).

    Article  CAS  Google Scholar 

  24. Weber, J. & Alonso, I. Near-band-gap photoluminescence of Si–Ge alloys. Phys. Rev. B 40, 5683–5693 (1989).

    Article  CAS  Google Scholar 

  25. Schnitzer, I., Yablonovitch E., Caneau, C., Gmitter, T. J. & Scherer, A. 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl. Phys. Lett. 63, 2174–2176 (1993).

    Article  CAS  Google Scholar 

Download references


The authors acknowledge support from Science Foundation Ireland (02/IN.1/172) and the EU Network of Excellence nanoPhotonics to Realise Molecular Scale Technologies (PhOREMOST) (FP6/2003/IST/2-511616). V.L. thanks the Programa Bicentenario de Cienca y Tecnología (PBCT), Chile (ACT027) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. We also acknowledge the contributions of N. Roos and T. P. Sidiki to the design of the MBE reactor, and thank A. C. Martín (Consejo Superior de Investigaciones Cientificas, CSIC) for MBE deposition of Ti/Pt/Au bottom contacts on selected samples, and D. Lebedev (University of Wuppertal) for ellipsometric characterization. We also thank C. Gergely and P. Arcade (Université Montpellier II) for access to their far-infrared spectrometer.

Author information

Authors and Affiliations



C.O.D., M.S. and C.M.S.T. conceived and designed the experiments and analyses. C.O.D., M.S. and G.V. performed the experiments. C.O.D., M.S., G.V. and V.L. analysed the data. S.B.N. conducted part of the TEM analysis and C.M.S.T. supervised the work. All authors discussed the results and C.O.D. wrote the manuscript.

Corresponding authors

Correspondence to C. O'Dwyer or V. Lavayen.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Dwyer, C., Szachowicz, M., Visimberga, G. et al. Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. Nature Nanotech 4, 239–244 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing